P. Liu et al. / Tetrahedron Letters 48 (2007) 2307–2310
2309
Table 3. Synthesis of chromans and 1,2,3,4-tetrahydroquinolines 7
L. E. Chem. Rev. 2003, 103, 2945–2964; (c) Geen, G. R.;
Evans, J. M.; Vong, A. K. In Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R., Ed.; Pergamon: UK, 1996;
Vol. 5, pp 470–500; (d) Balasubramanian, M.; Keay, J. G.
In Comprehensive Heterocyclic Chemistry II; Katritzky, A.
R., Ed.; Pergamon: UK, 1996; Vol. 5, pp 247–300; (e)
Keay, B. A.; Dibble, P. W. In Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R., Ed.; Pergamon: UK, 1996;
Vol. 2, pp 395–436; (f) Gribble, G. W. In Comprehensive
Heterocyclic Chemistry II; Katritzky, A. R., Ed.; Perg-
amon: UK, 1996; Vol. 2, pp 207–257; (g) Alvarez, M.;
Salas, M. Heterocycles 1991, 32, 759; (h) Xu, Y.-C.
Recent. Res. Dev. Org. Chem. 2000, 4, 423–441.
(Eq. 5)a
Entry
5
Y
Z
R1, R2
Yield 7b (%)
1
2
3
4
5
6
g
h
i
NHBoc
O
O
CH2
CH2
CH2
CH2
CH2
CH2
O
O
O
H, H
H, H
CN, H
H, H
–O(CH2)2O–
H, F
96
91
96
91
97
97
j
k
l
a Reactions were performed with 0.5 g of substrate in 5 mL of DMF
[0.1 g/mL] under nitrogen. All products exhibit satisfactory spec-
troscopic and physical properties.
b Yield refers to isolated yield of purified products.
2. (a) Sundberg, R. J. In Comprehensive Heterocyclic Chem-
istry II; Katritzky, A. R., Ed.; Pergamon: UK, 1996; Vol.
2, pp 119–206; (b) Friedrichsen, W. In Comprehensive
Heterocyclic Chemistry II; Katritzky, A. R., Ed.; Perg-
amon: UK, 1996; Vol. 2, pp 351–393; (c) Jones, G. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A.
R., Ed.; Pergamon: UK, 1996; Vol. 5, pp 167–243; (d)
Hepeworth, J. D.; Gabbutt, C. D.; Heron, B. M. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A.
R., Ed.; Pergamon: UK, 1996; Vol. 5, pp 351–468.
3. (a) Kisel, V. M.; Kostyrko, E. O.; Kovtunenko, V. A. In
Chemistry of Heterocyclic Compounds; Plenum Publishing:
New York, 2002; Vol. 38, pp 1295–1318; (b) Kametani, T.;
Fukumoto, K. Chemistry of Heterocyclic Compounds;
Wiley & Sons: Chichester, UK, 1981; pp 139–274.
4. (a) Kurono, N.; Honda, E.; Komatsu, F.; Orito, K.;
Tokuda, M. Tetrahedron 2004, 60, 1791–1801; (b) Hoff-
mann, H. M. R.; Schmidt, B.; Wolff, S. Tetrahedron 1989,
45, 6113–6126.
5. Arisawa, M.; Terasa, Y.; Theeraladanon, C.; Takahashi,
K.; Nagagawa, M.; Nishida, A. J. Organomet. Chem.
2005, 690, 5398–5406.
6. Ye, L.; Sun, X.; Zhu, C.; Tang, Y. Org. Lett. 2006, 8,
3853–3856.
7. (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104,
2127–2198; (b) Tietze, L. F.; lla, H.; Bell, H. P. Chem. Rev.
2004, 104, 3453–3516; (c) Ziegert, R. E.; Torang, J.;
Knepper, K.; Brase, S. J. Comb. Chem. 2005, 7, 147–169;
(d) Yip, K.; Yang, M.; Law, K.; Zhu, N.; Yang, D. J. Am.
Chem. Soc. 2006, 128, 3130–3131.
8. (a) Trost, B. M. J. Org. Chem. 2004, 69, 5813–5837; (b)
Trost, B. M.; Thiel, O. R.; Tsui, H. J. Am. Chem. Soc.
2003, 125, 13155–13164; (c) Mangeney, P.; Pays, C.
Tetrahedron Lett. 2003, 44, 5719–5722; (d) Schmidt, B.;
Hoffmann, H. M. R. Tetrahedron 1991, 47, 9357–9368;
(e) Friestad, G. K.; Branchaud, B. P. Tetrahedron Lett.
1995, 36, 7047–7050; (f) Huang, Q.; Fazio, A.; Dai, G.;
Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004,
126, 7460–7461; (g) Fukuyama, Y.; Yuasa, H.; Tonoi, Y.;
Harada, K.; Wada, M.; Asakawa, Y.; Hashimoto, T.
Tetrahedron 2001, 57, 9299–9307; (h) Brown, S.; Clarkson,
S.; Grigg, R.; Thomas, W. A.; Sridharan, V.; Wilson, D.
M. Tetrahedron 2001, 57, 1347–1359; (i) Overman, L. E.;
Oh, T.; Abelman, M. W. J. Org. Chem. 1987, 52, 4130–
4133; (j) Gibson, S. E.; Middleton, R. T. Chem. Commun.
1995, 1743–1744.
9. (a) Jeffery, T. Tetrahedron 1996, 52, 10113–10130, and
references cited therein; (b) Larock, R. C.; Babu, S.
Tetrahedron Lett. 1987, 28, 5291–5294; (c) Heck, R. F. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, New York, 1991; Vol. 4,
pp 833–863; (d) Beletskaya, I. P.; Cheprakov, A. V. Chem.
Rev. 2000, 100, 3009–3066.
Pd
O
Pd(OAc)2
NaOAc/HCO2Na
Et4NCl.H2O
Br
Reduction
slow
O
O
DMF
85 - 95oC
74%
8
8a
8b
8d
fast
β-H elimination
Pd
isomerization
O
O
8c
Scheme 1.
Interestingly, substrate 8 provided Heck product 8d,
rather than the reductive cyclization product 8b, even
with HCO2Na as reducing agent (Scheme 1).20 Product
8b could not be detected in the reaction mixture. We
speculated that 8 first underwent palladium catalyzed
oxidative addition and subsequently palladium migra-
tory insertion to afford 8a; the b-hydride elimination
of 8a to provide 8c was faster than competing hydride
reduction of 8a–8b. The exo-alkene intermediate 8c
isomerized under the reaction conditions to give the
thermodynamically more stable 8d as the final product
in 74% isolated yield. Without HCO2Na, palladium cat-
alyzed Heck cyclization of 8 afforded 8d but with a
slower reaction rate. We speculate that HCO2Na might
serve as the reducing agent facilitating the generation of
palladium(0) nano-particles from Pd(OAc)2 under the
reaction conditions.
In summary, we have developed a general ligand-free
palladium catalyzed reductive Heck reaction that can
be applied to the synthesis of a variety five and six
membered heterocycles in 70–99% yield. The chemistry
is robust and easy to perform on scale.
Acknowledgments
Dr. Michael Martinelli, Dr. John Ng, and Dr. Shawn
Eisenberg are acknowledged for providing helpful sug-
gestions. Dr. Paul Schnier and Mr. Samuel Thomas
are acknowledged for their assistance in obtaining
HRMS.
References and notes
10. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.;
Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61,
3849–3862.
1. (a) Shibasaki, M.; Vogl, E. M.; Ohshima, T. Adv. Synth.
Catal. 2004, 346, 1533–1552; (b) Dounay, A. B.; Overman,