Page 5 of 7
Journal of the American Chemical Society
Rabalakos, C.; van Gemmeren, M.; Leutzsch, M.; Klussmann, M.; List,
catalyst design and ligand screening via high-throughput techniques. J.
B. Asymmetric counteranion-directed Lewis acid organocatalysis for
the scalable cyanosilylation of aldehydes. Nat. Commun. 2016, 7,
12478. (f) Ohkuma, T.; Kurono, N.; Sakaguchi, Y.; Yamauchi, K.;
Yurino, T. Enantioselective cyanosilylation of alkynyl ketones
catalyzed by combined systems consisting of chiral ruthenium(II)
1517−1522.
(3) (a) Concellón, J. M.; Bardales, E. The first transformation of
aliphatic α,β-epoxyamides into α-hydroxyamides. Org. Lett. 2003, 5,
4783−4785. (b) Schenck, H. A.; Lenkowski, P. W.; Choudhury-
Murkherjee, I.; Ko, S. H. Stables, J. P.; Patel, M. K.; Brown, M. L.
Design, synthesis and evaluation of novel hydroxyamides as orally
Kagawa, N.; Ihara, M.; Toyota, M. Convergent total synthesis of (+)-
Cardona, L.; Fernández, I.; Marco-Aleixandre, A.; Muñoz, M. C.;
Pedro, J. R. Efficient method for the synthesis of functionalized
pyrazoles by catalyst-free one-pot tandem reaction of nitroalkenes with
F.; Green, M. E.; Floreancig, P. E. Total synthesis of pederin and
Mamillapalli, N. C.; Sekar, G. Enantioselective synthesis of α-hydroxy
2015, 21, 18584−18588.
(4) Grunewald, G. L.; Brouillette, W. J.; Finney, J. A. Synthesis of
α-hydroxyamides via the cyanosilylation of aromatic ketones.
(5) (a) Ebata, S.; Hirayama, H.; Higuchi, H.; Kida, K. European
Patent EP 0412310 B1. (b) Shen, C. H.; Lee, C. Y..; Tsai, C. J. United
States Patent US 8519187 B2.
(6) (a) Parkins, A. W. Catalytic hydration of nitriles to amides.
M. Metal-catalysed approaches to amide bond formation. Chem. Soc.
Rev. 2011, 40, 3405−3415. (c) García-Álvarez, R.; Crochet, P.;
Cadierno, V. Metal-catalyzed amide bond forming reactions in an
environmentally friendly aqueous medium: nitrile hydrations and
beyond. Green Chem. 2013, 15, 46−66. (d) García-Álvarez, R.;
Francos, J.; Tomás-Mendivil, E.; Crochet, P.; Cadierno, V. Metal-
catalyzed nitrile hydration reactions: the specific contribution of
1
2
3
4
5
6
7
8
(12)(a) Osprian, I.; Fechter, M. H.; Griengl, H. Biocatalytic
hydrolysis of cyanohydrins: an efficient approach to enantiopure α-
hydroxy carboxylic acids. J. Mol. Catal. 2003, B24−25, 89−98. (b)
Reisinger, C.; Osprian, I.; Glieder, A.; Schoemaker, H. E.; Griengl, H.;
Schwab, H. Enzymatic hydrolysis of cyanohydrins with recombinant
nitrile hydratase and amidase from Rhodococcus erythropolis.
A.; Osswald, S.; Yanenko, A. Screening, characterization and
application of cyanide-resistant nitrile hydratases. Eng. Life Sci. 2004,
4, 543−546. (d) Drauz K.; Buchholz, S.; Gröger, H. WO2005-
040393A1.
(13) Schlesinger, G.; Miller, S. L. Equilibrium and kinetics of
3729−3735.
(14) Chitale, S.; Derasp, J. S.; Hussain, B.; Tanveer, K.;
Beauchemin, A. M. Carbohydrates as efficient catalysts for the
13147−13150.
(15) (a) Noyori, R.; Hashiguchi, S. Asymmetric transfer
hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem.
Res. 1997, 30, 97−102. (b) Wang, D.; Astruc, D. The golden age of
transfer hydrogenation. Chem. Rev. 2015, 115, 6621−6686.
(16) (a) Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.;
Naka, H. hydration of terminal alkynes catalyzed by water-soluble
Matsuoka, A.; Isogawa, T.; Morioka, Y.; Knappett, B. R.; Wheatley,
A. E. H.; Saito, S.; Naka, H. Hydration of nitriles to amides by a chitin-
supported ruthenium catalyst. RSC Adv. 2015, 5, 12152−12160. (c)
Ushimaru, R.; Nishimura, T.; Iwatsuki, T.; Naka, H. A fluorinated
cobalt(III) porphyrin complex for hydroalkoxylation of alkynes. Chem.
(17) (a) Maffioli, S. I.; Marzorati, E.; Marazzi, A. Mild and
reversible dehydration of primary amides with PdCl2 in aqueous
acetonitrile. Org. Lett. 2005, 7, 5237−5239. (b) Maffioli, S. I.; Zhang,
Y.; Degen, D.; Carzaniga, T.; Del Gatto, G.; Serina, S.; Monciardini,
P.; Mazzetti, C.; Guglierame, P.; Candiani, G.; Chiriac, A. I.; Facchetti,
G.; Kaltofen, P.; Sahl, H.-G.; Dehò, G.; Donadio, S.; Ebright, R. H.
Antibacterial nucleoside-analog inhibitor of bacterial RNA
polymerase. Cell 2017, 169, 1240−1248.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) (a) Huang, X.; Shao, N.; Palani, A.; Aslanian, R.; Buevich, A.
The total synthesis of psymberin. Org. Lett. 2007, 9, 2597−2600. (b)
Gao, J.; Simon, J. O.; Rodrigo, R.; Assoud, A. From chiral ortho-
benzoquinone monoketals to nonracemic indolinocodeines through
Diels–Alder and Cope reactions. J. Org. Chem. 2013, 78, 48−58. (c)
Lindhagen, M.; Klingstedt, T.; Andersen, S. M.; Mulholland, K. R.;
(7) Jammot, J.; Pascal, R.; Commeyras, A. Hydration of
cyanohydrins in weakly alkaline solutions of boric acid salts.
(8) Ahmed, T. J.; Fox, B. R.; Knapp, S. M. M.; Yelle, R. B.; Juliette,
J. J.; Tyler, D. R. Investigation of the reactivity of Pt phosphinito and
molybdocene nitrile hydration catalysts with cyanohydrins. Inorg.
Chem. 2009, 48, 7828−7837.
Tinkler, L.; McPheators, G.; Chubb, R. Development of
a
chemoenzymatic route to (R)-allyl-(3-amino-2-(2-
65−69.
(9) (a) Knapp, S. M. M.; Sherbow, T. J.; Juliette, J. J.; Tyler, D. R.
Cyanohydrin hydration with [Ru(6-p-cymene)Cl2PR3] complexes.
T. J.; Yelle, R. B.; Zakharov, L. N.; Juliette, J. J.; Tyler, D. R.
Mechanistic investigations and secondary coordination sphere effects
in the hydration of nitriles with [Ru(6-arene)Cl2PR3] complexes.
J.; Yelle, R. B.; Juliette, J. J.; Tyler, D. R. Catalytic nitrile hydration
with Ru(6-p-cymene)Cl2PR2R´ complexes: secondary coordination
sphere effects with phosphine oxide and phosphinite ligands.
Suarez, F. J.; Diez, J.; Cadierno, V. An efficient ruthenium(IV) catalyst
for the selective hydration of nitriles to amides in water under mild
(10) (a) Downs, E. L.; Tyler, D. R. Nitrile and cyanohydrin
hydration with nanoparticles formed in situ from a platinum dihydride
T. J.; Downs, E. L.; Sayler, R. I.; Razink, J. J.; Juliette, J. J.; Tyler, D.
R. Investigation of 1,3,5-triaza-7-phosphaadamantane-stabilized silver
nanoparticles as catalysts for the hydration of benzonitriles and acetone
(19) Dubey, P.; Gupta, S.; Singh, A. K. Trinuclear complexes of
palladium(II) with chalcogenated N-heterocyclic carbenes: catalysis of
selective nitrile-primary amide interconversion and Sonogashira
(20) Pd(NO3)2•2H2O (purchased from Sigma-Aldrich) gave slightly
better results than Pd(NO3)2 (purchased from Wako Chemicals), but
Pd(NO3)2 was used here for further study because of its better
availability.
(21) (a) McKenzie, C. J.; Robson, R. High turnover catalysis at
bimetallic sites of the hydration of nitriles to carboxamides co-
catalysed by acid. Highly specific hydration of acrylonitrile to
Kaminskaia, N. V.; Kostic, N. M. Nitrile hydration catalysed by
3677−3686. (c) Hirano, T.; Uehara, K.; Kamata, K.; Mizuno, N.
Palladium(II) containing γ-Keggin silicodecatungstate that efficiently
6425−6433. (d) Tílvez, E.; Menéndez, M. I.; López, R. Unraveling the
reaction mechanism on nitrile hydration catalyzed by [Pd(OH2)4]2+:
insights from theory. Inorg. Chem. 2013, 52, 7541−7549. (e) Sharley,
D. D. S.; Williams, J. M. J. A selective hydration of nitriles catalysed
(11) Xing, X.: Xu, C.; Chen, B.; Li, C.; Virgil, S. C.; Grubbs, R. H.
Highly active platinum catalysts for nitrile and cyanohydrin hydration:
ACS Paragon Plus Environment