416
R. M. Tynebor et al. / Bioorg. Med. Chem. Lett. 21 (2011) 411–416
Figure 5. Calculated EC50 of 31 at 24 h in the LPS induced TNFa rodent model.
4. (a) Hynes, J.; Leftheris, K. Curr. Top. Med. Chem. 2005, 5, 967; (b) Goldstein, D.
M.; Kuglstatter, A.; Lou, Y.; Soth, M. J. J. Med. Chem. 2010, 53, 2345.
5. Patel, S. P.; Cameron, P. M.; O’Keefe, S. J.; Frantz-Wattley, B.; Thompson, J. B.;
O’Neill, E. A.; Tennis, T.; Liu, L.; Becker, J. W.; Scapin, G. Acta Crystallogr., Sect. D
2009, 65, 777.
6. O’Keefe, S. J.; Mudgett, J. S.; Cupo, S.; Parsons, J. N.; Chartrain, N. A.; Fitzgerald,
C.; Chen, S.-L.; Lowitz, K.; Rasa, C.; Visco, D.; Luell, S.; Carballo-Jane, E.; Owens,
K.; Zaller, D. M. J. Biol. Chem. 2007, 282, 34663.
Compounds 17, 19, and 31 possessed the best balance between
functional activity and selectivity and were further evaluated to
determine pharmacokinetic properties (Table 5). Composition of
the linker region played a major role in determining the pharmaco-
kinetic profile of pyridopyridazin-6-one derivatives. Oxygen deriv-
ative 19 significantly increased the AUC and bioavailability when
compared to the historical thioether linker of 17. Methylene linker
31 further improved the pharmacokinetic profile of 19 by increas-
ing the AUC an additional 10-fold, lowering clearance to 1.8 mL/
min/kg, and increasing t1/2 to 6.5 h.
7. Tynebor, R. M.; Chen, M.-H.; Natarajan, S. R.; O’Neill, E. A.; Thompson, J. E.;
Fitzgerald, C. E.; O’Keefe, S. J.; Doherty, J. B. Bioorg. Med. Chem. Lett. 2010, 20,
2765.
8. (a) Bemis, G. W.; Salituro, F. G.; Duffy, J. P.; Harrington, E. M. U.S. Patent
6147,080, 2000; (b) Salituro, F.; Bemis, G.; Cochran, J. WO 99/64,400.
9. (a) Natarajan, R. S.; Doherty, J. B. Curr. Top. Med. Chem. 2005, 5, 987; (b)
Herberich, B.; Cao, G.-Q.; Chakrabarti, P. P.; Falsey, J. R.; Pettus, L.; Rzasa, R. M.;
Reed, A. B.; Reichelt, A.; Sham, K.; Thaman, M.; Wurz, R. P.; Xu, S.; Zhang, D.;
Hsieh, F.; Lee, M. R.; Syed, R.; Li, V.; Grosfeld, D.; Plant, M. H.; Henkle, B.;
Sherman, L.; Middleton, S.; Wong, L. M.; Tasker, A. S. J. Med. Chem. 2008, 51,
6271.
Compounds 19 and 31 were evaluated in the LPS induced ar-
thritic rodent model to assess their ability to decrease high levels
of TNF
levels by 75% while 19 only reduced levels by 30% after 4 h. At the
24 h time point 19 showed no apparent reduction in TNF levels
a at 4 and 24 h (Table 6). A 3 mg/kg dose of 31 reduced TNFa
a
10. In house data.
while 31 reduced levels by 55% with respect to the vehicle. Addi-
tional doses of 31 were tested to determine that the effective con-
11. Liu, L.; Stelmach, J. E.; Natarajan, S. R.; Chen, M. H.; Singh, S. B.; Schwartz, C. D.;
Fitzgerald, C. E.; O’Keefe, S. J.; Zaller, D. M.; Schmatz, D. M.; Doherty, J. B. Bioorg.
Med. Chem. Lett. 2003, 13, 3979.
centration needed to reduce TNFa by 50% (EC50) at the 24 h time
12. (a) Liverton, N. J.; Butcher, J. W.; Claiborne, C. F.; Claremon, D. A.; Libby, B. E.;
Ngyuen, K. T.; Pitzenberger, S. M.; Selnick, H. G.; Smith, G. R.; Tebben, A.; Vacca,
J. P.; Varga, S. L.; Agarwal, L.; Dancheck, K.; Forsyth, A. J.; Fletcher, D. S.; Frantz,
B.; Hanlon, W. A.; Harper, C. F.; Hofsess, S. J.; Kostura, M.; Lin, J.; Luell, S.;
O’Neill, E. A.; Orevillo, C. J.; Pang, M.; Parsons, J.; Rolando, A.; Sahly, Y.; Visco, D.
M.; O’Keefe, S. J. J. Med. Chem. 1999, 42, 2180; (b) A SPA-bead based assay was
carried out using mouse p38. Compounds were serially diluted into a 96 well
plate containing a MOPS based p38 assay buffer. The assay was initiated by
addition of cold ATP, 33P ATP (gamma) and biotin labeled GST-ATF2 substrate
point was 2.4 mg/kg (Fig. 5). Although both compounds have sim-
ilar functional activity, the superior pharmacokinetic properties of
31 resulted in a higher degree of efficacy in the LPS rodent model.
Our efforts led to the discovery of a novel class of pyridopyrida-
zin-6-one derived p38
selectivity, excellent functional activity, and efficacy in the rat LPs
model. The process of transforming a p38 /b dual inhibitor into a
p38 selective inhibitor identified several important structural
a inhibitors that possessed moderate p38a/b
a
(4 lM). After incubation at 30 °C for 3 h, the reaction was stopped by addition
a
of a PBS based quench buffer with 2ꢁ moles of SPA beads over the amount of
substrate used. The extent of phosphorylation of GST-ATF2 was measured
using a top count reader and subtracted from background. IC50s are means of
two experiments.
traits necessary to balance selectivity and potency. The end result
of this research was the development of a structurally unique ser-
ies that could serve as a template for further optimization.
13. Computed using the mixed torsional/low-mode sampling algorithm as
implemented in Maestro v 9.02 from the software company, Schrodinger.
Used the MMFFs force field in the gas phase with a distance dielectric constant
of 2.
Acknowledgment
14. Calculated Log D values: 5 = 6.08 0.88, 19 = 4.53 0.90. ACDLabs 11.0.
15. Natarajan, S. R.; Chen, M.-H.; Heller, S. T.; Tynebor, R. M.; Crawford, E. M.;
Minxiang, C.; Kaizheng, H.; Dong, J.; Hu, B.; Hao, W.; Chen, S.-H. Tetrahedron
Lett. 2006, 47, 5063.
The authors would like to thanks Dr. Georgia B. McGaughey for
all molecular modeling images presented in this Letter.
16. Anti human TNF-
a was coated on immulon 4 plates. THP-1 cells
(density = 2.5 ꢁ 106/mL) were suspended into 96-well plates containing
a
References and notes
PBS based medium. Compound was added as solution in DMSO followed by
addition of LPS. The reaction was incubated for 4 h at 37 °C under CO2. TNF
release was measured in the supernatants by ELISA. Reported IC50s are means
from three measurements.
a
1. (a) Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Nat. Rev.
Drug Disc. 2003, 2, 736; (b) Saklatvala, J. Curr. Opin. Pharmacol. 2004, 4, 372.
2. Stoll, J. G.; Yasothan, U. Nat. Rev. Drug Disc. 2009, 8, 693.
3. (a) Kumar, S.; Boehm, J.; Lee, J. C. Nat. Rev. Drug Disc. 2003, 2, 717; (b) Pettus, L.
H.; Wurz, R. P. Curr. Top. Med. Chem. 2008, 8, 1452.