Cyclopropylglycine and Methyl 2-Cyclopropyl-2-N-Boc-iminoacetate
FULL PAPERS
[10] Two successful examples for the selective reduction of
the functional groups next to hydrogenolytically labile
cyclopropane rings with zinc under acidic conditions
have recently been described: a) R. P. Wurz, A. B.
Charette, J. Org. Chem. 2004, 69, 1262–1269; b) O. V.
Larionov, A. de Meijere, Org. Lett. 2004, 6, 2153–2156.
[11] a) M. Sypniewski, B. Peke, L. Simon, J. River, J. Org.
Chem. 2000, 65, 6595–6600; b) T. Miyazawa, H. Iwana-
ga, T. Yamada, S. Kuwata, Biotech. Lett. 1994, 16, 373–
378; c) T. Miyazawa, H. Iwanaga, T. Yamada, S.
Kuwata, Peptide Chem. 1991, 28, 57–60; d) J. L. Mori-
niere, B. Danree, J. Lemoine, A. Guy, Synth. Commun.
1988, 18, 441–444; e) J. L. Abernethy, R. Bobeck, A.
Ledesma, R. Kemp, J. Org. Chem. 1973, 38, 1286–
1291.
Methyl 2-N-tert-Butoxycarbonylamino-2-cyclo-
propyl-(5-methoxyfuran-2-yl)acetate (17-OMe)
According to GP2, 17-OMe (2.8 g, 86%) was obtained from
imino ester 13 (2.27 g, 10 mmol) and 2-methoxyfuran 16-
OMe (2.16 g, 22 mmol), and purified by column chromatog-
raphy (hexane/Et2O, 5:1). Rf =0.25, (hexane/Et2O, 2:1). Col-
1
orless solid; mp 708C. H NMR (300 MHz): d=0.31 – 0.67
(4H, m), 1.37 (9H, s), 1.61 – 1.74 (1H, m), 3.75 (3H, s), 3.80
(3H, s), 5.15 (1H, d, J=3.3 Hz), 5.48 (1H, br s), 6.37 (1H, d,
J=3.3 Hz); 13C NMR (62.9 MHz): d=1.27 (CH2), 2.05
(CH2), 16.63 (C), 28.11 (CH3), 52.98 (CH3), 57.75 (CH3),
61.78 (C), 79.79 (C), 80.28 (CH), 110.01 (CH), 140.91 (C),
~
154.02 (C), 160.7 (C), 171.14 (C); IR (KBr): n=3426, 3119,
2980, 2944, 1722, 1623, 1581, 1493, 1262, 1164, 1004, 962,
832, 777, 730, 666, 542 cmÀ1; LR-MS (EI): m/z=325.1 (6)
[M+], 266.1 (10), 210.0 (55), 166.0 (20), 114.0 (28), 57.1
[12] K. O. Hallinan, D. H. G. Crout, W. Errington, J. Chem.
Soc., Perkin Trans. 1 1994, 3537–3543.
+
[13] The absolute configurations of (À)- and (+)-cyclopro-
pylglycine (À)-8 and (+)-8 were assigned on the basis
of their signs of optical rotation as reported in ref.[12].
[14] O. V. Larionov, T. F. Savel’eva, K. A. Kochetkov, N. S.
Ikonnikov, S. I. Kozhushkov, D. S. Yufit, J. A. K.
Howard, V. N. Khrustalev, Yu. N. Belokon, A. de Mei-
jere, Eur. J. Org. Chem. 2003, 869–877.
(100); HR-MS (ESI): m/z=326.1599, calcd. for C16H24NO6
[M + H+]: 326.1598.
Acknowledgements
[15] O. V. Larionov, S. I. Kozhushkov, A. de Meijere, Syn-
This work was supported by the State of Niedersachsen and
the Fonds der Chemischen Industrie. O. V. L. is indebted to
the Degussa-Stiftung for a graduate fellowship. The authors
are grateful to the companies BASF AG, Bayer AG, Cheme-
tall GmbH, as well as Degussa AG for generous gifts of
chemicals, and to Dr. B. Knieriem, Gçttingen, for his careful
proof-reading of the final manuscript.
thesis 2003, 12, 1916–1919.
[16] R. S. Coleman A. J. Carpenter, J. Org. Chem. 1993, 58,
4452–4461.
[17] a) H. Poisel, U. Schmidt, Angew. Chem. 1976, 9, 295–
297; Angew. Chem. Int. Ed. Engl. 1976, 15, 294–296;
b) H. Poisel, Chem. Ber. 1975, 108, 2547–2553; c) A. J.
Kolar, R. K. Olsen, Synthesis 1977, 457–459.
[18] In order to clarify this phenomenon. a computational
study (AM1) of the tautomeric pairs methyl 2-cyclo-
propyl-2-(N-methoxycarbonylimino)acetate and methyl
2-cyclopropylidene-2-(N-methoxycarbonylamino)ace-
tate, as well as the methyl 3,3-dimethyl-2-(N-methoxy-
carbonylamino)acrylate and its imine isomer methyl
3,3-dimethyl-2-(N-methoxycarbonylimino)acetate was
performed. In the latter tautomeric pair the 2-amino-
acrylate was found to be by 5.0 and 4.1 kcalmolÀ1, re-
spectively, more stable than the (Z)- and (E)-imine, re-
spectively. This correlates with the experimental and
spectral data, evincing that the compounds of this type
exist as 2-aminoacrylates, and add nucleophiles in the
1,4-manner. In contrast, in the former tautomeric pair,
the (Z)-imine diastereomer is by 2.1 kcalmolÀ1 more
stable than the (E)-imine, and by 4.5 kcalmolÀ1 than
the cyclopropylideneacetate. Thus, after elimination of
HCl from the N-chloro derivative 12, the system arrives
at the thermodynamically more stable tautomer.
[19] a) Y.-R. Luo, J. L. Holmes, J. Phys. Chem. 1992, 96,
9568–9571; b) R. B. Turner, P. Goebel, B. J. Mallon, W.
von E. Doering, J. F. Coburn, M. Pomerantz, J. Am.
Chem. Soc. 1968, 90, 4315–4322.
References
[1] Part 126 in the series “Cyclopropyl Building Blocks for
Organic Synthesis”; for part 125 see: M. Marradi, A.
Brandi, A. de Meijere, Synlett 2006, 1125–1127; part
124: S. Dalai, V. N. Belov, S. Nizamov, K. Rauch, D.
Finsinger, A. de Meijere, Eur. J. Org. Chem. 2006,
2753–2765.
[2] A. de Meijere, S. I. Kozhushkov, L. P. Hadjiarapoglou,
Topics Curr. Chem. 2000, 149–227, and references cited
therein.
[3] a) F. Seyed-Mahdavi, S. Teichmann, A. de Meijere, Tet-
rahedron Lett. 1986, 27, 6185–6188; b) A. de Meijere,
S. Teichmann, F. Seyed-Mahdavi, S. Kohlstruk, Liebigs
Ann. 1996, 1989–2000.
[4] M. Limbach, S. Dalai, A. de Meijere, Adv. Synth. Catal.
2004, 346, 760–766.
[5] V. N. Belov, C. Funke, T. Labahn, M. Es-Sayed, A. de
Meijere, Eur. J. Org. Chem. 1999, 1345–1356.
[6] A. Esposito, P. P. Piras, D. Ramazzotti, M. Taddei, Org.
Lett. 2001, 3, 3273–3275.
[20] See, for example: W. M. Kazmierski, C. J. Aquino, N.
Bifulco, E. E. Boros, B. A. Chauder, P. Y. Chong, M.
Duan, F. Deanda, C. S. Koble, E. W. Mclean, J. P. Peck-
ham, A. C. Perkins, J. B. Thompson, D. Vanderwall,
WO Patent 2004 054 974 A2, 2004.
[7] H. K. Chenault, J. Dahmer, G. M. Whitesides, J. Am.
Chem. Soc. 1989, 111, 6354–6364.
[8] S. I. Kozhushkov, M. Brandl, D. S. Yufit, R. Machinek,
A. de Meijere, Liebigs Ann. Recl. 1997, 2197–2204.
[9] D. E. Slaughter, R. Subramanian, M. E. Fraley, T.
Prueksaritanont, H. Shu, WO Patent 2004 087 050 A2,
2004.
[21] a) S. D. Larsen, P. A. Grieco, J. Am. Chem. Soc. 1985,
107, 1768–1769; b) K. Waldmann, Liebigs Ann. Chem.
Adv. Synth. Catal. 2006, 348, 1071 – 1078
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1077