2922
U. Martı´nez-Estı´balez et al. / Tetrahedron Letters 48 (2007) 2919–2922
Ardeo, A.; Ignacio, R.; Sotomayor, N.; Lete, E. Tetra- 10. In the Suzuki coupling, the 2,4,6-trivinylcyclotriboroxane
´
hedron 2005, 61, 3311–3324; (g) Garcıa, E.; Arrasate, S.;
was prepared in situ by reaction of vinylmagnesium
chloride and B(OMe)3 as described in: Kerins, F.; O’Shea,
D. F. J. Org. Chem. 2002, 67, 4968–4971.
Lete, E.; Sotomayor, N. J. Org. Chem. 2005, 70, 10368–
10374; (h) Garcıa, E.; Lete, E.; Sotomayor, N. J. Org.
´
Chem. 2006, 71, 6776–6784; (i) Ruiz, J.; Lete, E.;
Sotomayor, N. Tetrahedron 2006, 62, 6182–6189.
11. Pandit, U. K.; Overkleeft, H. S.; Bore, B. C.; Bieraugel, H.
Eur. J. Org. Chem. 1999, 959–968, see also Refs. 1c and 5a.
12. For examples of unsubstituted, or 2-alkyl substituted
dihydroisoquinolines synthesis by RCM, see: (a) Van
Otterlo, W. A. L.; Pathak, R.; de Koning, C. B. Synlett
2003, 1859–1861; (b) Theeraladanon, C.; Arisawa, M.;
Nakagawa, M.; Nishida, A. Tetrahedron: Asymmetry 2005,
16, 827–831; (c) Arisawa, M.; Terada, Y.; Takahashi, K.;
Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255–
5. For a review on approaches to nitrogen heterocycles using
RCM, see: (a) Arisawa, M.; Tereda, Y.; Theeraladanon,
C.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Orga-
nomet. Chem. 2005, 690, 5398–5406; For recent examples,
see: (b) Felpin, F. X.; Girard, S.; Wo-Thanh, G.; Robins,
R. J.; Villiers, J.; Lebreton, J. J. Org. Chem. 2001, 66,
6305–6312; (c) Dolman, S. J.; Sattely, E. S.; Hoveyda, A.
H.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6991–
6997; (d) Chippindale, A. M.; Davies, S. G.; Iwamoto, K.;
Parkin, R. M.; Smethurst, C. A. P.; Smith, A. D.;
´
4261; (d) Bennasar, M. L.; Roca, T.; Monerris, M.; Garcıa-
´
Dıaz, D. J. J. Org. Chem. 2006, 71, 7028–7034, For the
preparation of the C-4 substituted derivatives, see: Ref. 4a.
13. Synthesis of 1-methyl-2-phenyl-1,2,3,6-tetrahydrobenzo[b]-
azozine (14). A solution of amine 8a (174 mg, 0.63 mmol)
in dry CH2Cl2 (15 mL) was treated with first-generation
Grubb’s catalyst 10 (3 · 0.04 mg, 8 mol %) under reflux
for 40 h. The second and third portions of the catalyst
were added after heating for 16 h and 27 h, respectively.
The reaction mixture was allowed to reach rt. Removal of
the solvent under reduced pressure, followed by flash
column chromatography (silica gel, 5% hexane/AcOEt)
afforded benzazozine 14 (106 mg, 68%): IR (CHCl3)
´
Rodrıguez-Solla, H. Tetrahedron 2003, 59, 3253–3265;
(e) Dolman, S. J.; Hultzsch, K. C.; Pezet, F.; Teng, X.;
Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 2004,
126, 10945–10953; (f) Sattely, E. S.; Cortez, G. A.;
Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 8526–8533; (g) Dondas, H. A.;
Clique, B.; Cetinkaya, B.; Grigg, R.; Kilner, C.; Morris, J.;
Sridharan, V. Tetrahedron 2005, 61, 10652–10666; (h)
Brass, S.; Gerber, H.-D.; Do¨rr, S.; Diederich, W. E.
Tetrahedron 2006, 62, 1777–1786.
6. This work has been presented in part in the ‘XIV
1594 cmꢀ1 1H NMR (CDCl3) 1.89–2.01 (m, 1H), 2.25–
;
´
Congreso Nacional de la Sociedad Espanola de Quımica
˜
Terapeu´tica’, Bilbao (Spain), 2005, com.C-65.
2.32 (m, 1H), 2.63 (s, 3H), 3.27–3.36 (dd, J = 17.0, 6.3 Hz,
1H), 3.91–4.01 (m, 2H), 5.25–5.31 (m, 1H), 5.77–5.86 (m,
1H), 7.12–7.47 (m, 9H); 13C NMR (CDCl3) 31.7, 36.4,
40.5, 72.9, 122.3, 124.6, 125.1, 126.8, 127.4, 127.8, 128.0,
130.1, 131.2, 137.3, 142.7, 151.8; MS (EI) [m/z (rel
inensity)] 249 (M+, 100), 208 (12), 172 (32), 158 (27), 144
(9). HRMS calcd for C18H19N: 249.1517, found: 249.1530.
7. The carbamate 2 was prepared by treatment of o-iodo-
aniline 1 with ethyl chloroformate and pyridine in THF at
room temperature for 16 h (90%).
8. Organ, M. G.; Xu, J.; N’Zemba, B. Tetrahedron Lett.
2002, 48, 8177–8180.
9. Synthesis of 2-allylaniline (3a). To a solution of methyl 2-
iodophenylcarbamate 2 (297 mg, 1.07 mmol) in dry DMF
(10 mL), allyltributylstananne (0.41 mL, 1.29 mmol), and
Pd(PPh3)4 (250 mg, 0.21 mmol) were added under argon
atmosphere. The reaction mixture was heated at 100 ꢁC
for 18 h and then allowed to reach room temperature. The
solvent was evaporated under reduced pressure, and the
residue was dissolved in CH2Cl2 (15 mL) and washed with
brine (3 · 15 mL). The organic extracts were dried
(Na2SO4) and concentrated in vacuo. Flash column
chromatography (silica gel, 10% hexane/AcOEt) afforded
aniline 3a (65 mg, 47%) as an oil: IR (CHCl3) 3447,
14. For the synthesis of a dihydrobenzazepine and a
dihydrobenzazocine derivative by RCM, see: Arisawa,
M.; Theeraladanon, C.; Nishida, A.; Nakagawa, M.
Tetrahedron Lett. 2001, 42, 8029–8033.
15. 2-Phenylquinolines have been synthesized by addition of
organometallics to quinoline: (a) Crawforth, C. E.; Meth-
Cohn, O.; Russell, C. A. J. Chem. Soc., Perkin Trans. 1
1972, 2807–2810; (b) Goldstein, S. W.; Dambek, P. J.
Synthesis 1989, 221–222; Thermal cyclization of 2-azahexa-
trienes: (c) Hibino, S.; Sugino, E. Heterocycles 1987, 26,
1883–1889; Carbonylation of 20-nitrochalcones and 20-
nitrostyrenes catalyzed by palladium: (d) Tollari, S.;
Penoni, A.; Cenini, S. J. Mol. Catal. A 2000, 152, 47–54;
2-Phenylbenzo[b]azepines have been prepared by intermo-
lecular allene-nitrone cycloadditions: (e) Tufariello, J. J.;
Ali, S. A.; Klingele, H. O. J. Org. Chem. 1979, 44, 4213–
4215; Ring expansion reaction of tetrahydronaphthalene
derivatives: (f) Adam, G.; Andrieux, J.; Plat, M. Tetra-
hedron 1982, 38, 2403–2410.
3368 cmꢀ1 1H NMR (CDCl3) 3.36 (d, J = 6.3 Hz, 2H),
;
3.67 (broad s, 2H), 5.12–5.20 (m, 2H), 5.93–6.09 (m, 1H),
6.72 (d, J = 7.9 Hz, 1H), 6.81 (t, J = 7.4 Hz), 7.09–7.16
(m, 2H); 13C NMR (CDCl3) 36.1, 115.5, 115.8, 118.5,
123.6, 127.2, 129.8, 135.7, 144.6; MS (EI) [m/z (rel
inensity)] 133 (M+, 100), 118 (36), 106 (29), 77 (9). HRMS
calcd for C9H11N: 133.0891, found: 133.0888.