LETTER
Yb(OTf)3-Catalyzed [4+2] Cycloaddition of Allenyltrimethylsilylthioketenes
617
X
O
O
Pd(OAc)2 (5 mol%),
(o-Tol)3P (10 mol%)
Me3Si
Me
PMB
PMB
N
Me3Si
Me
PMB
N
ref. 7g
TsOH (3.5 equiv)
CHCl3, refux, 12 h
N
N
Me
Et3N (5.0 equiv),
DMF, 90 °C, 12 h
Me
O
Br
O
7f (58%)
8f (88%)
onychine (5)
4f (X = S)
6f (X = O)
N
Ph
Ts
(1.2 equiv)
0 °C to r.t., 30 min
67%
Scheme 2 Formal total synthesis of onychine (5)
(3) Bennett, B.; Okamoto, I.; Danheiser, L. Org. Lett. 1999, 1,
641.
in our hand, we next undertook the intramolecular Heck
reaction of 6f leading to 4-azafluorenone. A DMF solu-
tion of d-lactam 6f, Pd(OAc)2 (10 mol%), (o-Tol)3P (20
mol%) and Et3N (5 equiv) was heated at 90 °C for 12
hours under a N2 atmosphere. Removal of the solvent
followed by column chromatographic separation afforded
4-azafluoren-3-one 7f in 58% yield (Scheme 2).12 Inter-
estingly, 7f was readily oxidized to give the correspond-
ing 4-azafluoren-3,9-dione 9f in aerobic storage and 7f
was immediately subjected to desilylation. Treatment of
7f with TsOH·H2O (3.5 equiv) under refluxing CHCl3
condition furnished desilylated 4-azafluoren-3-one 8f in
88% yield.13 It is noteworthy that desilylation of 7f using
TABF in THF or K2CO3 in MeOH resulted in the recovery
of 7f. The spectral aspects of 8f were identical to that of
the key intermediate of onychine synthesis reported by
Padwa.7g
(4) (a) Shimada, K.; Akimoto, S.; Itoh, H.; Nakamura, H.;
Takikawa, Y. Chem. Lett. 1994, 1743. (b) Shimada, K.;
Akimoto, S.; Takikawa, Y.; Kabuto, C. Chem. Lett. 1994,
2286. (c) Koketsu, M.; Kanoh, M.; Itoh, E.; Ishihara, H. J.
Org. Chem. 2001, 66, 4099. (d) Koketsu, M.; Kanoh, M.;
Yamamura, Y.; Ishihara, H. Tetrahedron Lett. 2005, 46,
1479. (e) Aoyagi, S.; Sugimura, K.; Kanno, N.; Watanabe,
D.; Shimada, K.; Takikawa, Y. Chem. Lett. 2006, 992.
(5) Aoyagi, S.; Hakoishi, M.; Suzuki, M.; Nakanoya, Y.;
Shimada, K.; Takikawa, Y. Tetrahedron Lett. 2006, 47,
7763.
(6) (a) de Almeida, M. E. I.; Braz, F. R.; von Bulow, M. V.;
Gottleib, O. R.; Maia, J. G. S. Phytochemistry 1976, 15,
1186. (b) Goulart, M. O. F.; Santana, A. E. G.; de Oliveira,
A. B.; de Oliveira, G. G.; Maia, J. G. S. Phytochemistry
1986, 25, 1691. (c) Arango, G. J.; Cortes, D.; Cassels, B. K.;
Cave, A.; Merienne, C. Phytochemistry 1987, 26, 2093.
(d) Tadic, D.; Cassels, B. K.; Cave, A.; Goulart, M. P. F.; de
Oliveira, A. B. Phytochemistry 1987, 26, 1551. (e) Tadic,
D.; Cassels, B. K.; Cave, A. Heterocycles 1988, 27, 407.
(7) (a) Koyama, J.; Sugita, T.; Suzuta, Y.; Irie, H. Heterocycles
1979, 12, 1017. (b) Zhang, J.; El-Shabrawy, O.; El-
Shabrawy, M. A.; Schiff, P. L. Jr.; Slatkin, D. J. J. Nat. Prod.
1987, 50, 800. (c) Alves, T.; de Oliveira, A. B.; Snieckus, V.
Tetrahedron Lett. 1988, 29, 2135. (d) Koyama, J.; Okatani,
T.; Tagahara, K. Heterocycles 1989, 29, 1648. (e) Bracher,
F. Synlett 1991, 95. (f) Nitta, M.; Ohnuma, M.; Iino, Y. J.
Chem. Soc., Perkin Trans. 1 1991, 1115. (g) Padwa, A.;
Heidelbaugh, T. M.; Kuethe, J. T. J. Org. Chem. 2000, 65,
2368.
(8) A CHCl3 (30 mL) solution of 1a (900 mg, 4.95 mmol), N-(p-
methoxybenzyl)-2-bromobenzylidenamine (3f; 100 mg,
3.29 mmol) and Yb(OTf)3 (408 mg, 0.66 mmol) was heated
to reflux for 14 h. The resulting reaction mixture was
subjected to column chromatography on silica gel (hexane–
EtOAc, 10:1). 4f: yield: 1040 mg (65%); yellow plates; mp
138.8–139.2 °C. MS: m/z (%) = 485 (6) [M+], 470 (47)
[M+ – Me], 412 (16) [M+ – TMS], 121 (100) [PMB]. IR
(KBr): 2943, 1514, 1514, 1475, 1253, 1244, 875, 844 cm–1.
1H NMR (400 MHz, CDCl3): d = 0.45 (s, 9 H), 1.93 (s, 3 H),
3.78 (s, 3 H), 3.99 (d, J = 14.5 Hz, 1 H), 5.34 (s, 1 H), 5.61
(s, 1 H), 5.67 (s, 1 H), 8.08 (d, J = 14.5 Hz, 1 H), 6.81 (d,
J = 8.6 Hz, 2 H), 7.10–7.15 (m, 1 H), 7.21–7.25 (m, 2 H),
7.28 (d, J = 8.6 Hz, 2 H), 7.52 (d, J = 7.9 Hz, 1 H). 13C NMR
(100 MHz, CDCl3): d = 3.2 (q), 19.0 (q), 54.0 (t), 55.2 (q),
62.6 (d), 113.9 (d), 117.5 (dd), 123.1 (s), 127.5 (d), 127.8 (d),
128.1 (s), 129.5 (d), 129.7 (d), 133.6 (d), 136.6 (s), 141.4 (s),
141.9 (s), 142.7 (s), 159.1 (s), 195.6 (s). Anal. Calcd for
C24H28BrNOSSi: C, 59.25; H, 5.80; N, 2.88. Found: C,
59.14; H, 5.89; N, 2.90.
In conclusion, Yb(OTf)3-catalyzed [4+2] cycloaddition of
allenyltrimethylsilylthioketenes 2 with arylaldimines 3
proceeded smoothly to afford d-thiolactams 4. d-Lactam
6f, derived from d-thiolactam 4f, successfully underwent
intramolecular Heck reaction to give 4-azafluoren-3-one
7f and the following protodesilylation furnished 8f, a key
intermediate of onychine synthesis. Synthetic potentiality
of the Lewis acid catalyzed aza-Diels–Alder reaction
protocol, using allenyltrimethylsilylthioketenes 2, as a
convenient access route to azafluorenone alkaloids has
been demonstrated. Total synthesis of the related aza-
fluorenone alkaloids in this protocol are currently in
progress in our laboratory.
References and Notes
(1) (a) Barluenga, J.; Mateos, C.; Aznar, F.; Valdés, C. J. Org.
Chem. 2004, 69, 7114. (b) Mancheño, O. G.; Arrayás, R. G.;
Carretero, J. C. J. Am. Chem. Soc. 2004, 126, 456.
(c) Barluenga, J.; Mateos, C.; Aznar, F.; Valdés, C. Org.
Lett. 2002, 4, 1971. (d) Furman, B.; Dziedzic, M.
Tetrahedron Lett. 2003, 44, 6629.
(2) (a) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57,
3264. (b) Ishihara, K.; Miyata, M.; Hattori, K.; Tada, T.;
Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 10520.
(c) Kobayashi, S.; Ishitani, H.; Nagayama, S. Synthesis
1995, 1195. (d) Kobayashi, S.; Komiyama, S.; Ishitani, H.
Angew. Chem. Int. Ed. 1998, 37, 979. (e) Kobayashi, S.;
Ishitani, H. Chem. Rev. 1999, 99, 1069.
Synlett 2007, No. 4, 615–618 © Thieme Stuttgart · New York