Inorg. Chem. 2007, 46, 3426−3428
Evidence for the Formation of Terminal Hydrides by Protonation of an
Asymmetric Iron Hydrogenase Active Site Mimic
Salah Ezzaher, Jean-Franc
Philippe Schollhammer,* and Jean Talarmin
¸ois Capon, Fre´de´ric Gloaguen, Franc¸ois Y. Pe´tillon,
Chimie, Electrochimie Mole´culaires et Chimie Analytique, Faculte´ des Sciences,
UMR CNRS 6521, UniVersite´ de Bretagne Occidentale, 6 AVenue Le Gorgeu, CS 93837,
29238 Brest Cedex 3, France
Roger Pichon and Nelly Kervarec
SerVice de RMN, UFR Sciences et Techniques, UniVersite´ de Bretagne Occidentale, CS 93837,
29238 Brest Cedex 3, France
Received February 16, 2007
Treatment of [Fe2(
(Ph2PCH2CH2PPh2) in refluxing toluene affords the asymmetric
complex [Fe2( -pdt)(CO)4(dppe)] (1). Protonation of 1 with HBF4
Et2O in CH2Cl2 gives at room temperature the -hydrido derivative
[Fe2( -pdt)(CO)4(dppe)( -H)](BF4) (2). Monitoring the reaction by
1H, 31P, and 13C NMR at low temperature reveals unambiguously
that the process of the protonation of 1 implies terminal hydride
intermediates.
µ
-pdt)(CO)6] [pdt
)
S(CH2)3S] with dppe
that must drive the formation of H2 at the natural site or at
those of new electrocatalysts based on the diiron core.
Terminal hydride is proposed to be a major key intermediate
in these processes, but until now the first and sole precedent
of a terminal hydride had been obtained indirectly by the
addition of LiAlH4 to a bimetallic iron(II) complex.3 It has
been reported that the protonation of pdt (S(CH2)3S) or adt
(SCH2NRCH2S) species gives µ-hydride or N-protonated
derivatives.4 Recently, theoretical studies have pointed out
the interest in using asymmetric diiron systems as one of
the key structural features of the natural site.5 The use of
chelating bidendate ligands such as diphosphine is a way to
obtain such an asymmetry and to influence the basicity of
the site.6 The work reported here concerns new aspects of
the protonation of asymmetric dithiolatodiiron systems. The
appearance during the course of our writing of several
“ASAP” papers devoted to asymmetric diiron compounds7
prompted us to report our preliminary results on the study
µ
−
µ
µ
µ
Synthetic organometallic diiron molecules incorporating
some of the structural key features of the active site of the
iron-only hydrogenases are intensively developed with the
aim that a better understanding of the stereoelectronic control
exerted by the active site on the catalytic processes should
allow one to elaborate more efficient electrocatalysts. Some
satisfactory, rudimentary or sophisticated, structural models
with a combination of dithiolate or azadithiolate bridges and
various sets of terminal ligands, involving CO, CN-, RNC,
or PR3, have been synthesized, but few efficient catalysts of
proton reduction have been obtained.1 In this context, the
question of the activation of protons is far from being trivial
because it is the elementary step for a future efficient
electrocatalyst.2 The knowledge of the fate of the protons at
such a diiron site is primordial to understanding the processes
(3) van der Vlugt, J. I.; Rauchfuss, T. B.; Whaley, C. M.; Wilson, S. R.
J. Am. Chem. Soc. 2005, 127, 16012-16013.
(4) (a) Arabi, M. S.; Mathieu, R.; Poilblanc, R. J. Organomet. Chem. 1979,
177, 199-209. (b) Li, H.; Rauchfuss, T. B. J. Am. Chem. Soc. 2001,
124, 726-727. (c) Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B.;
Benard, M.; Rohmer, M.-M. Inorg. Chem. 2002, 41, 6573-6582. (d)
Nehring, J. L.; Heinekey, D. M. Inorg. Chem. 2003, 42, 4288-4292.
(e) Wang, F.; Wang, M.; Liu, X.; Jin, K.; Dong, W.; Li, G.; Akermark,
B.; Sun, L. Chem. Commun. 2005, 3221-3223. (f) Dong, W.; Wang,
M.; Liu, X.; Jin, K.; Li, G.; Wang, F.; Sun, L. Chem. Commun. 2006,
305-307.
* To whom correspondence should be addressed. E-mail: schollha@
univ-brest.fr.
(5) Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. Inorg. Chem. 2006, 45,
119-126.
(6) Dowa, J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am. Chem.
Soc. 1992, 114, 160-165.
(7) (a) Hogarth, G.; Richards, I. Inorg. Chem. Commun. 2007, 10, 66-
70. (b) Justice, A. K.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B.;
van der Vlugt, J. I.; Wilson, S. R. Inorg. Chem. 2007, 46, 1655-
1664. (c) Duan, L.; Wang, M.; Li, P.; Na, Y.; Wang, N.; Sun, L. Dalton
Trans. 2007, DOI: 10.1039/b616645h. (d) Gao, W.; Ekstro¨m, J.; Liu,
J.; Chen, C.; Eriksson, L.; Weng, L.; Akermark, B.; Sun, L. Inorg.
Chem. 2007, 46, 1981-1991.
(1) (a) Rauchfuss, T. B. Inorg. Chem. 2004, 43, 14-26. (b) Georgakaki,
I. P.; Thomson, L. M.; Lyon, E. J.; Hall, M. B.; Darensbourg, M. Y.
Coord. Chem. ReV. 2003, 238-239, 255-266. (c) Evans, D. J.; Pickett,
C. J. Chem. Soc. ReV. 2003, 32, 268-275. (d) King, R. B.; Bitterwolf,
T. E. Coord. Chem. ReV. 2000, 206-207, 563-579. (e) Capon, J.-F.;
Gloaguen, F.; Schollhammer, P.; Talarmin, J. Coord. Chem. ReV. 2005,
249, 1664-1676.
(2) (a) Tye, J. W.; Darensbourg, M. Y.; Hall, M. B. THEOCHEM 2006,
45, 123-128. (b) Greco, C.; Zampella, G.; Bertini, L.; Bruschi, M.;
Fantucci, P.; De Gioia, L. Inorg. Chem. 2007, 46, 108-116.
3426 Inorganic Chemistry, Vol. 46, No. 9, 2007
10.1021/ic0703124 CCC: $37.00
© 2007 American Chemical Society
Published on Web 03/31/2007