10.1002/adsc.202000214
Advanced Synthesis & Catalysis
one (BI-OH, 0.2 mmol, 52.8 mg), trifuoroacetic acid (TFA,
0.4 mmol, 45.6 mg), DMSO/H2O (2 mL, v/v=1:1),
irradiated by 54 W Red LEDs under air at 25 C for 48
15333; b) Y. Tang, Q. Yu, S. Ma, Org. Chem. Front.
2017, 4, 1762.
[6] T. Itoh, Y. Shimizu, M. Kanai, Org. Lett. 2014, 16,
2736.
[7] N. Zhu, F. Wang, P. Chen, J. Ye, G. Liu, Org. Lett.
2015, 17, 3580.
[8] Z. Huang, Q. Lu, Y. Liu, D. Liu, J. Zhang, A. Lei, Org.
Lett. 2016, 18, 3940.
o
hours. The resulting mixture was diluted with ethyl acetate
and washed with brine. The combined organic layer was
collected and concentrated. The resulting residue was
purified by column chromatography (eluent: 1:2 (v/v) of
ethyl acetate/petroleum ether) to afford product 3aa (80.7
mg, 95% yield) as a white solid, m.p.: 122.7-124.0 °C.
[9] R. Tomita, T. Koike, M. Akita, Chem. Commun. 2017,
53, 4681.
1
TLC (Rf = 0.35, petroleum ether/ethyl acetate = 2:1). H
NMR (400 MHz, CDCl3) δ 7.76-7.69 (m, 4H), 7.55-7.43
(m, 6H), 7.31 (d, J = 14.4 Hz, 1H), 6.30-6.19 (m, 2H), 6.10
(d, J = 15.3 Hz, 1H), 1.81-1.63 (m, 2H), 1.50 (s, 9H), 1.42
(s, 3H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz,
CDCl3) δ 167.3, 165.2, 144.0 (d, J = 17.3 Hz), 134.2, 133.1,
131.8, 131.8, 131.1 (d, J = 3.5 Hz), 131.0 (d, J = 3.5 Hz),
128.7 (d, J = 7.1 Hz), 128.6 (d, J = 7.1 Hz), 124.7 (d, J =
1.2 Hz), 119.2 (d, J = 100.3 Hz), 81.3, 76.0 (d, J = 4.7 Hz),
34.5, 28.1, 27.9 (d, J = 0.8 Hz), 8.0. 31P NMR (162 MHz,
CDCl3) δ 26.75 (s). HRMS (ESI): ([M+H]+) Calcd for
C25H32O4P+: 427.2033, Found: 427.2029. IR (film) ν 3353,
3053, 2977, 2942, 2921, 2854, 1708, 1627, 1581, 1436,
1366, 1283, 1251, 1159, 964, 926, 843, 814, 748, 694, 619
cm−1. (CCDC number for compound 3ab: 1963373).
[10] a) G. Zhang, T. Xiong, Z. Wang, G. Xu, X. Wang, Q.
Zhang, Angew. Chem. Int. Ed. 2015, 54, 12649; b) N.
Lu, Z. Zhang, N. Ma, C. Wu, G. Zhang, Q. Liu, T.
Liu, Org. Lett. 2018, 20, 4318; c) M. Brochetta, T.
Borsari, A. Gandini, S. Porey, A. Deb, E. Casali, A.
Chakraborty, G. Zanoni, D. Maiti, Chem. Eur. J. 2019,
25, 750.
[11] a) D. Holt, M. J. Gaunt, Angew. Chem. Int. Ed. 2015,
54, 7857; b) L. Huang, Q. Wang, W. Wu, H. Jiang, J.
Org. Chem. 2014, 79, 7734; c) P. Xiong, H. Long, J.
Song, Y. Wang, J.-F. Li, H.-C. Xu, J. Am. Chem. Soc.
2018, 140, 16387.
[12] a) S. Hanessian, Ed. Natural Products in Medicinal
Chemistry, Wiley-VCH: Weinheim, 2014; b) E.
McNeill, T. Ritter, Acc. Chem. Res. 2015, 48, 2330; c)
J. C. Leung, L. M. Geary, T.-Y. Chen, J. R. Zbieg, M.
J. Krische, J. Am. Chem. Soc. 2012, 134, 15700; d)
X.-H. Yang, V. M. Dong, J. Am. Chem. Soc. 2017,
139, 1774; e) A. Lumbroso, M. L. Cooke, B. Breit,
Angew. Chem. Int. Ed. 2013, 52, 1890; f) D. H.
Lukamto, M. J. Gaunt, J. Am. Chem. Soc. 2017, 139,
9160; g) B. Zhu, T. Shen, X. Huang, Y. Zhu, S. Song,
N. Jiao, Angew. Chem. Int. Ed. 2019, 58, 11028.
[13] V. T. Nguyen, H. T. Dang, H. H. Pham, V. D. Nguyen,
C. Flores-Hansen, H. D. Arman, O. V. Larionov, J.
Am. Chem. Soc. 2018, 140, 8434.
Acknowledgements
This project is supported by the Foundation Research Project
of Jiangsu Province (The Natural Science Foundation, Nos.
BK20180513 and BK20191305), the Fundamental Research
Funds for the Central Universities (NJAU, Grant No.
KYDZ201904), the Qing-Lan Project of Jiangsu Provincial
Department of Education and the “333 High Level Talent
Project” of Jiangsu Province.
[14] a) M. Mao, L. Zhang, Y.-Z. Chen, J. Zhu, L. Wu, ACS
Catal. 2017, 7, 181; b) K. Luo, W.-C. Yang, K. Wei,
Y. Liu, J.-K. Wang, L. Wu, Org. Lett. 2019, 21, 7851;
c) Y.-T. Xia, J.-J. Wu, C.-Y. Zhang, M. Mao, Y.-G. Ji,
L. Wu, Org. Lett. 2019, 21, 6383; d) K. Wei, K. Luo,
F. Liu, L. Wu, L.-Z. Wu, Org. Lett. 2019, 21, 1994; e)
W.-C. Yang, K. Wei, X. Sun, J. Zhu, L. Wu, Org. Lett.
2018, 20, 3144; f) J. Zhu, W.-C. Yang, X.-D. Wang,
L. Wu, Adv. Synth. Catal. 2017, 360, 386.
[15] a) N. Kobayashi, S. Nakajima, H. Ogata, T. Fukuda,
Chem. Eur. J. 2004, 10, 6294; b) J. Grodkowski, T.
Dhanasekaran, P. Neta, J. Phys. Chem. A 2000, 104,
11332; c) T. Ikeue, M. Sonoda, S. Kurahashi, H.
Tachibana, D. Teraoka, T. Sugimori, K. Kasuga, M.
Handa, Inorg. Chem. Commun. 2010, 13, 1170.
[16] H. Ma, Q. Sun, W. Li, J. Wang, Z. Zhang, Y. Yang, Z.
Lei, Tetrahedron Lett. 2011, 52, 1569.
[17] a) S.-K. Wu, H.-C. Zhang, G.-Z. Cui, D.-N. Xu, H.-J.
Xu, Acta Chim. Sinica, 1985, 3, 21; b) Y. Xu, Z. Chen,
Chem. Lett. 2003, 32, 592; c) M. Hu, Y. Xu, Z.
Xiong, Chem. Lett. 2004, 33, 1092. For capture and
detection of singlet oxygen species, see: d) W. Ding,
L.-Q. Lu, Q.-Q. Zhou, Y. Wei, J.-R. Chen, W.-J. Xiao,
J. Am. Chem. Soc. 2017, 139, 63; e) L. Zhao, P. Li, X.
Xie, L. Wang, Org. Chem. Front. 2018, 5, 1689.
[18] a) A. Maldotti, A. Molinari, R. Amadelli, Chem. Rev.
References
[1] a) J. A. Marshall, Chem. Rev. 2000, 100, 3163; b) R.
Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan,
Chem. Rev. 2000, 100, 3067; c) Ma, S. Chem. Rev.
2005, 105, 2829; d) N. Krause, C. Winter, Chem. Rev.
2011, 111, 1994; e) S. Yu, S. Ma, Chem. Commun.
2011, 47, 5384; f) P. Rivera-Fuentes, F. Diederich,
Angew. Chem. Int. Ed. 2012, 51, 2818; g) S. Ma,
Carbopalladation of allenes. In Handbook of
Organopalladium Chemistry for Organic Synthesis; E.
Negishi, A. de Meijer, Eds.; Wiley: New York, 2002.
[2] a) S. Ma, Acc. Chem. Res. 2009, 42, 1679; b) Z. Wang,
X. Xu, O. Kwon, Chem. Soc. Rev. 2014, 43, 2927; c)
M. Jeganmohan, C.-H .Cheng, Chem. Commun. 2008,
3101; d) A. P. Pulis, K. Yeung, D. J. Procter, Chem.
Sci. 2017, 8, 5240; e) K. C. K. Swamy, M. Anitha, G.
Gangadhararao, R. R. Suresh, Pure Appl. Chem. 2017,
89, 367; f) K. C. K. Swamy, M. Anitha, S. Debnath,
M. Shankar, Pure Appl. Chem. 2019, 91, 773.
[3] a) L. Liu, R. M. Ward, J. M. Schomaker, Chem. Rev.
2019, 119, 12422; b) G. Qiu, J. Zhang, K. Zhou, J.
Wu, Tetrahedron, 2018, 74, 7290.
[4] R. Zeng, C. Fu, S. Ma, Angew. Chem. Int. Ed. 2012, 51,
3888.
[5] a) C. Xue, C. Fu, S. Ma, Chem. Commun. 2014, 50,
8
This article is protected by copyright. All rights reserved.