R. Hunter et al. / Tetrahedron Letters 48 (2007) 2819–2822
2821
R1
6
Cl4Sn
O
O
H
H
O
O
O
R= MOM
R1= CH(OMOM)CH2OTBDPS
OTMS
N
R
2
BnO
PMB
OTBS
Sn
Cl4
N
O
MeO
7
O
1
Casiraghi
Hunter
Figure 4. Transition-state models for formation of adducts 3 and 8.
J. Org. Chem. 2006, 71, 225–230; (b) Battistini, L.; Curti,
C.; Zanardi, F.; Rassu, G.; Auzzas, L.; Casiraghi, G. J.
Org. Chem. 2004, 69, 2611–2613; (c) Brimble, M. A.;
Burgess, C.; Halim, R.; Petersson, M.; Ray, J. Tetrahedron
2004, 60, 5751–5758; (d) DeGoey, D. A.; Chen, H.-J.;
Flosi, W. J.; Grampovnik, D. J.; Yeung, C. M.; Klein, L.
L.; Kempf, D. J. J. Org. Chem. 2002, 67, 5445–5453; (e)
Arroyo, Y.; de Paz, M.; Rodriguez, J. F.; Sanz-Tejedor,
M. A.; Ruano, J. L. G. J. Org. Chem. 2002, 67, 5638–5643;
(f) Li, W.-R.; Lin, S. T.; Hsu, N.-M.; Chern, M.-S. J. Org.
Chem. 2002, 67, 4702–4706; (g) Jacobi, P. A.; DeSimone,
R. W.; Ghosh, I.; Guo, J.; Leung, S. H.; Pippin, D. J. Org.
Chem. 2000, 65, 8478–8489; (h) Pichon, M.; Jullian, J.-C.;
Figadere, B.; Cave, A. Tetrahedron Lett. 1998, 39, 1755–
1758; (i) Uno, H.; Baldwin, J. E.; Russell, A. T. J. Am.
Chem. Soc. 1994, 116, 2139–2140.
be a single diastereomer, with the H-4/H-5 coupling
constant (see Scheme 1 for numbering) being around
2 Hz indicating14 erythro relative stereochemistry in con-
trast to the threo-stereochemistry obtained by Casiraghi
for 3 (Scheme 1). In order to establish the absolute ste-
reochemistry, a single crystal X-ray determination15 was
carried out to reveal 4S,5R-configurations for 8 and,
importantly, to establish four of the contiguous chiral
centres for (+)-castanospermine, Figure 2.
Analysis of facial selectivities for producing Casiraghi’s
adduct 3 and our adduct 8 reveal the following. Overall,
the reaction proceeds via ald (Si)/pyr (Si) for 3 versus
ald (Re)/pyr (Si) for 8. The aldehyde facial selectivities
may be rationalized using a Felkin–Anh chelate for
both, except that acetonide 2 used by Casiraghi (see
Scheme 1) uses a b-chelate as proposed by Mukaiyama,4
whereas our case involving 6 (Scheme 3) proceeds via an
a-chelate.16 Figure 3 summarizes these features.
2. (a) Langlois, N.; Le Nguyen, B. K.; Retailleau, P.; Tarnus,
C.; Salomon, E. Tetrahedron: Asymmetry 2006, 17, 53–60;
(b) Rassu, G.; Carta, P.; Pinna, L.; Battistini, L.; Zanardi,
F.; Acquotti, D.; Casiraghi, G. Eur. J. Org. Chem. 1999, 6,
1395–1400; (c) Dudot, B.; Micouin, L.; Baussanne, I.;
Royer, J. Synthesis 1999, 688–694.
Facial selectivities14,17 on the two different silyloxypyr-
roles 1 and 7 are both Si but for different reasons. In
Casiraghi’s case, the aldehyde carbonyl group of 2
points more towards the N-Boc end where a possible
cooperative interaction between tin and the carbamate
carbonyl oxygen may play a role18 in the transition
state. Such an arrangement also ensures that the alde-
hyde chain points away from the pyrrole ring. Con-
versely, in our case, Si-face selectivity in 7 is consistent
with the carbonyl group of aldehyde 6 pointing inwards
over the pyrrole in an endo-Diels–Alder-like fashion,17
to ensure that the C1–C2 bond of aldehyde 6 points
away from the pyrrole ring to accommodate the C2
hydrogen. Furthermore, the C-4 methoxy group of 7
may possibly develop cooperative interactions with tin
as shown in Figure 4, which suggests transition-state
models for the two reactions.
3. Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem.
Soc. Rev. 2000, 29, 109–118.
4. Mukaiyama, T.; Suzuki, K.; Yamada, T.; Tabusa, F.
Tetrahedron 1990, 46, 265–276.
5. Casiraghi, G.; Ulgheri, F.; Spanu, P.; Rassu, G.; Pinna,
L.; Gasparri Fava, G.; Ferrari Belicchi, M.; Pelosi, G.
J. Chem. Soc., Perkin Trans. 1 1993, 23, 2991–2997.
6. Casiraghi, G.; Rassu, G.; Spanu, P.; Pinna, L. J Org.
Chem. 1992, 57, 3760–3763.
7. Michael, J. P. Nat. Prod. Rep. 2005, 22, 603–626; Michael,
J. P. Nat. Prod. Rep. 2003, 20, 458–475.
8. For some recent syntheses, see: (a) Karanjule, N. S.;
Markad, S. D.; Shinde, V. S.; Dhavale, D. D. J. Org.
Chem. 2006, 71, 4667–4670; (b) Zhao, Z.; Song, L.;
Mariano, P. S. Tetrahedron 2005, 61, 8888–8894; (c)
Cronin, L.; Murphy, P. V. Org. Lett. 2005, 7, 2691–2693.
9. (a) Martin, S. F.; Chen, H. J.; Lynch, V. M. J. Org. Chem.
1995, 60, 276–278; (b) Gallagher, T.; Giles, M.; Subra-
manian, R. S.; Hadley, M. S. J. Chem. Soc., Chem.
Commun. 1992, 166–168.
In summary, this work provides a solution for the
4,5-erythro/5,6-threo-selectivity in silyloxypyrrole vinyl-
ogous Mukaiyama aldol additions pertaining to cast-
anospermine synthesis. Studies directed at attempting
to transform our 4,5-erythro-adduct to castanospermine
will be reported in due course as well as the generality of
using silyloxypyrrole 7 in this new stereoselective
reaction.
10. Hunter, R.; Richards, P. Synlett 2003, 2, 271–273.
11. Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G.
Chem. Rev. 2000, 100, 1929–1972.
12. Duc, L.; McGarrity, J. F.; Meul, T.; Warm, A. Synthesis
1992, 391–394.
13. Data for adduct 8 (see Scheme 4 for numbering): Mp 107–
108 ꢁC (from ethyl acetate–hexane); [a]D +6.67 (c 3.0,
CH2Cl2); Found: C, 65.52; H, 7.36; N, 2.10. C37H49NO9Si
requires C, 65.37; H, 7.26; N, 2.06; mmax 3053 (OH), 2933
(CH), 1678 (C@O), 1628 (C@C) cmÀ1; dH (CDCl3,
300 MHz) 1.06 (9H, s, t-Bu), 3.08 (3H, s, OCH3), 3.34
(3H, s, OCH3), 3.68 (3H, s, OCH3), 3.74 (3H, s, OCH3),
3.75–3.90 (3H, m, H-7, H-8), 3.99 (1H, dd, J 7.0, 1.8 Hz,
H-6), 4.08 (1H, d, J 2.0 Hz, H-4), 4.08 (1H, d, J 15.3 Hz,
Bn), 4.19 (1H, dd, J 7.0, 2.0 Hz H-5), 4.22 (1H, d,
References and notes
1. (a) Curti, C.; Zanardi, F.; Battistini, L.; Sartori, A.; Rassu,
G.; Auzzas, L.; Roggio, A.; Pinna, L.; Casiraghi, G.