Page 9 of 10
Journal of the American Chemical Society
(2) (a) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 14940.
I, (-)-quadrigemine C and (-)-psycholeine, see: Lindovska, P.;
Movassaghi, M. J. Am. Chem. Soc. 2017, 139, 17590.
(18) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012,
338, 647.
(b) Loach, R. P.; Fenton, O. S.; Movassaghi, M. J. Am. Chem. Soc.
2016, 138, 1057. (c) Nicolaou, K. C.; Liu, G.; Beabout, K.; McCurry,
M. D.; Shamoo, Y. J. Am. Chem. Soc. 2017, 139, 3736. (c) Spittler,
M.; Lutsenko, K.; Czekelius, C. J. Org. Chem. 2016, 81, 6100.
(3) Coupling of tertiary R-MgX catalyzed by Ni: (a) Lohre, C.;
Dröge, T.; Wang, C.; Glorius, F. Chem.–Eur. J. 2011, 17, 6052. (b)
Joshi-Pangu, A.; Wang, C.‒Y.; Biscoe, M. R. J. Am. Chem. Soc.
2011, 133, 8478.
(4) Cu- and Co-catalyzed coupling of tertiary R-MgX with alkyl
halides: (a) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.;
Kambe, N. Angew. Chem., Int. Ed. 2007, 46, 2086. (b) Ren, P.;
Stern, L. A.; Hu, X. L. Angew. Chem., Int. Ed. 2012, 51, 9110. (c)
Yang, C.–T.; Zhang, Z.–Q.; Liang, J.; Liu, J.–H.; Lu, X.–Y.; Chen,
H.–H.; Liu, L. J. Am. Chem. Soc. 2012, 134, 11124. (d) Iwasaki, T.;
Takagawa, H.; Singh, S. P.; Kuniyasu, H.; Kambe, N. J. Am. Chem.
Soc. 2013, 135, 9604.
1
2
3
4
5
6
7
8
(19) Although an X-ray single crystal structure of 30-Br was not
1
available, its formation was confirmed by H and 13C NMR cou-
pled with high resolution mass spectrometry (see the Supporting
Information for details).
(20) References on bis- and tris(pyridine)–Ni complexes: (a)
Cámpora, J.; del Mar Conejo, M.; Mereiter, K.; Palma, P.; Pérez C.;
Manuel L. Reyes, M. L.; Ruiz, C. J. Orgmetall. Chem. 2003, 683,
220. (b) Feth, M. P.; Klein, A. Helmut Bertagnolli, H. Eur. J. Inorg.
Chem. 2003, 839.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1
(21) Diamagnetic H NMR for complexes 30-X (X = Cl, Br, I) was
observed in DMSO-d6, supporting the square planar Ni(II) coor-
dination geometry. The ionic nature of 30-X was further verified
by conductivity measurement in DMA.
(5) Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139,
9847.
(22) (a) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
See also: (b) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136,
16588. (c) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G.
A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
(6) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.
(7) Coupling of Ar−MgX with admantanyl chloride: (a) Ghorai, S.
K.; Jin, M.; Hatakeyama, T.; Nakamura, M. Org. Lett. 2012, 14,
1066. (b) Direct coupling of Ar2Zn with tBu–Br and admantanyl–
Br: Dunsford, J. J.; Clark, E. R.; Ingleson, M. J. Angew. Chem., Int.
Ed. 2015, 54, 5688. Coupling of styrenyl aziridines with or-
ganozincs to give all quaternary carbon products: (c) Huang, C.-
Y.; Doyle, A. G. J. Am. Chem. Soc. 2015, 137, 5638.
(8) For recent reviews on reductive coupling of two electrophiles,
see: (a) Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.;
Gosmini, C.; von Wangelin, A. J. Chem. ‒Eur. J. 2014, 20, 6828. (b)
Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793. (c)
Moragas, T.; Correa, A.; Martin, R. Chem. ‒Eur. J. 2014, 20, 8242.
(d) Wang, X.; Dai, Y.; Gong, H Top. Curr. Chem. (Z) 2016, 374, 43.
(9) Acylation of admantanyl chloride with CO2 and of unactivat-
ed tertiary alkyl halides with acid anhydrides: (a) Börjesson, M.;
Moragas, T.; Martin, R. J. Am. Chem. Soc. 2016, 138, 7504. (b)
Zhao, C.; Jia, X.; Wang, X.; Xue, W. J. Am. Chem. Soc. 2014, 137,
17645.
(10) Reductive allylation of tertiary alkyl halides with allylic car-
bonates and acetates: (a) Chen, H.; Jia, X.; Yu, Y.; Qian, Q. Gong,
H. Angew. Chem., Int. Ed. 2017, 56, 13103-13106. (b) Gosmini C.
Angew. Chem., Int. Ed. 2011, 50, 10402.
(11) Dimerization of activated tertiary alkyl halides: (a) Peng, Y.;
Luo, L.; Yan, C.–S.; Zhang, J.–J.; Wang, Y.–W. J. Org. Chem. 2013,
78, 10960. (b)Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org.
Biomol. Chem. 2014, 12, 298.
(23) For [(bpy)Ni(Mes)I], a known compound, the iodide disso-
ciation rate was found to be fast (k = 0.176 M–1S–1), but its chlo-
ride analog undergoes extremely slow dissociation (k = 5.18 × 10–5
M–1S–1). Therefore, formation of the more stable Ni–Cl bond in
complex 32 is plausible. References on [(bpy)Ni(Mes)I]: (a) Klein,
A.; Kaiser, A.; Wielandt, W.; Belaj, F.; Wendel, E.; Bertagnolli, H.;
Záliš, S. Inorg. Chem. 2008, 47, 11324. (b) Hamacher, C.; Hurkes,
N.; Kaiser, A.; Klein, A. Z. Anorg. Allg. Chem. 2007, 633, 2711.
(24) Feng, C.; Cunningham, D. W.; Easter, Q. T.; Blum S. A. J.
Am. Chem. Soc. 2016, 138, 11156.
(25) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall,
R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P.
J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc. 2006, 128, 13175.
(26) Vitek, A. K.; Leone, A. K.; McNeil, A. J.; Zimmerman, P. M.
ACS Catal. 2018, 8, 3655.
(27) In an analogous study by Weix (ref 12b), the overall rate for
the coupling of a primary alkyl bromide with bromobenze was
found to be controlled by activation of Zn. Given the
heterogeneous nature of the present catalytic process, the
reaction rate can be affected by various factors, including the
complex functions of the Ni precatalyst, MgCl2/LiCl additives,
and Zn reductant (see the section of Mechanistic Investigations
in the Supporting Information for details).
(12) Selected examples of arylation of primary and secondary
alkyl halides using cross-electrophile coupling methods: (a)
Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc.
2013, 135, 7442. (b) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am.
Chem. Soc. 2012, 134, 6146–6159. (c) Zhao, Y.; Weix, D. J. J. Am.
Chem. Soc. 2014, 136, 48. (d) Tellis, J. C.; Primer, D. N.; Molander,
G. A. Science 2014, 345, 433. (e) Zuo, Z.; Ahneman, D, T.; Chu, L.;
Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345,
437.
(13) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc.
2015, 137, 11562.
(14) The seminal work reported by Overman et al. required over
20 steps of reaction to synthesize the intermediate 26 starting
from (R)-serine. References: (a) Goverk, S. P.; Overman, L. E. J.
Am. Chem. Soc. 2001, 123, 9469. (b) Govek, G. P.; Overman, L. E.
Tetrahedron Lett. 2007, 63, 8499.
(15) The reaction conditions were described in Ref. 13, which
involved Ni(acac)2 (10%), DMAP (30%), and MgCl2 (150%).
(16) See the Supporting Information (SI) for details.
(17) For additional natural products containing C8’-indole deriv-
atives such as (-)-hodgkinsine, (-)-calycosidine, (-)-quadrigemine
ACS Paragon Plus Environment