3036
C. Lai, B. J. Backes / Tetrahedron Letters 48 (2007) 3033–3037
2. Patai, S. The Chemistry of the Thiol Group; John Wiley &
Sons: London, 1974; Chapter 4, Part 1, pp 163–269.
3. (a) Testaferri, L.; Tingoli, M.; Tiecco, M. Tetrahedron
Lett. 1980, 21, 3099–3100; (b) Pinchart, A.; Dallaire, C.;
Bierbeek, A. V.; Gingras, M. Tetrahedron Lett. 1999, 40,
5479–5482; (c) Takagi, K. Chem. Lett. 1985, 1307–1308;
(d) Flatt, A. K.; Tour, J. M. Tetrahedron Lett. 2003, 44,
6699–6702; (e) Becht, J.-M.; Wangner, A.; Mioskowski, C.
J. Org. Chem. 2003, 68, 5758–5761; (f) Katritzky, A. R.;
Khan, G. R.; Schwarz, O. A. Tetrahedron Lett. 1984, 25,
1223–1226; (g) Rane, A. M.; Miranda, E. I.; Soderquist, J.
A. Tetrahedron Lett. 1994, 35, 3225–3226; (h) Itoh, T.;
Mase, T. Org. Lett. 2004, 6, 4587–4590.
4. S-Aryl thioacetates were prepared in 40–60% yield by the
treatment of arenediazonium tetrafluoroborates with
commercial potassium thioacetate. Petrillo, G.; Novi,
M.; Garbarino, G.; Filiberti, M. Tetrahedron Lett. 1988,
29, 4185–4188.
5. (a) MacCoss, R. N.; Henry, D. J.; Brain, C. T.; Ley, S. V.
Synlett 2004, 675–678; (b) Jin, C. K.; Jeong, H. J.; Kim,
M. K.; Kim, J. Y.; Yoon, Y.-J.; Lee, S.-G. Synlett 2001,
1956–1958.
10, 91%). Aryl chlorides did not couple under these con-
ditions, thus defining the limits of reactivity (entry 11).
These methods were applied to the development of pyr-
rolidine-constrained phenethylamine DPP-IV inhibitors
such as 1.10 A flexible and efficient synthesis of com-
pound 1 is shown in Scheme 2.11 Briefly, pyrrolidine
2
3
10 was treated with bromo-substituted triazine chloride
12 to provide 4 in high yield (83%). This efficient trans-
formation proceeded with quaternization of the amine
followed by debenzylation.13 Compound 4 was then
coupled with potassium thioacetate under our optimized
reaction conditions to form key intermediate 5 in 87%
yield. Compound 5 was cleanly converted to the corre-
sponding methyl sulfide via one-pot deacylation/alkyl-
ation with MeI.8 Finally, oxidation of the methyl
sulfide with m-chloroperoxybenzoic acid followed by a
deprotection step provided the desired product 1 in high
yield (84% from 5).
6. Thea, S.; Cevasco, G. Tetrahedron Lett. 1988, 29, 2865–
2866.
7. Thea, S.; Cevasco, G. Tetrahedron Lett. 1987, 28, 5193–
5194.
In summary, we have developed an efficient and func-
tional group compatible method for the formation of
aryl–sulfur bonds through the coupling of aryl bromides
and aryl triflates with an inexpensive thiol source. The
S-aryl thioacetate products that this method provides
are versatile intermediates for the preparation of a range
of sulfur-containing functional groups. We have applied
these methods to the synthesis of DPP-IV inhibitors that
contain sensitive functionality. Further improvement
and applications of this protocol will be reported in
due course.
8. Sawicki, E. J. Org. Chem. 1956, 21, 271–273.
9. All microwave reactions were performed using a Personal
Chemistry EmrysTM Optimizer in a septa capped 2–5 mL
BiotageTM microwave tube with magnetic stirring. Power
required to maintain target temperature was controlled by
EmrysTM Optimizer Software. The synthesis of represent-
ative compound thioacetic acid S-(4-tert-butoxycarbonyl-
amino-phenyl) ester (Table 2, entry 5): (4-Bromo-
phenyl)carbamic acid tert-butyl ester (270 mg, 1.0 mmol),
potassium thioacetate (170 mg, 1.5 mmol), Pd2(dba)3
(23 mg, 0.025 mmol) and Xantphos (29 mg, 0.050 mmol)
were placed in a 2–5 mL BiotageTM microwave tube capped
with a rubber septum. The tube was evacuated under
vacuum and refilled with nitrogen three times. i-Pr2NEt
(350 lL, 2.0 mmol) and degassed dry 1,4-dioxane (3.6 mL)
were added to the tube and the rubber septum was quickly
replaced with a microwave tube cap. The reaction mixture
was heated in a microwave at 160 °C for 25 min. The
reaction mixture was partitioned between EtOAc and
water. The aqueous phase was extracted again with
EtOAc. The combined organic phase was dried over
Na2SO4 and concentrated in vacuo. The crude material
was purified by flash chromatography on silica gel (0–20%
EtOAc/hexanes) to give thioacetic acid S-(4-tert-butoxy-
carbonylaminophenyl) ester (190 mg, 71%). 1H NMR
(300 MHz, CD3OD) d 7.43–7.51 (m, 2H), 7.24–7.31 (m,
2H), 2.35 (s, 1H), 1.51 (s, 9H) ppm. 13C NMR (100 MHz,
CD3OD) d 196.75, 154.88, 142.14, 136.31, 122.01, 119.98,
81.15, 29.85, 28.66 ppm. MS (+ESI) m/z 285.0
(M þ NH4þ). Anal. Calcd for C13H17NO3S: C, 58.4; H,
6.41; N, 5.24. Found: C, 58.35; H, 6.20; N, 5.18.
Acknowledgements
The authors thank the staff of Abbott Structural Chem-
istry Department for obtaining the spectral data, and
Dr. Andrew J. Souers and Dr. Thomas W. von Geldern
for their valuable comments.
References and notes
1. (a) Lindstd, R. I.; McKinley-Mckee, J. S. Eur. J. Biochem.
1996, 241, 142–148; (b) Karyakin, A. A.; Presnova, G. V.;
Rubtsova, M. Y.; Egorov, A. M. Anal. Chem. 2000, 72,
3805–3811; (c) Winn, M.; Reily, E. B.; Liu, G.; Huth, J.
R.; Jae, H.-S.; Freemam, J.; Pei, Z.; Xin, Z.; Lynch, J.;
Kester, J.; von Geldern, T. W.; Leitza, S.; DeVries, P.;
Dickinson, R.; Mussatto, D.; Okasinski, G. F. J. Med.
Chem. 2001, 44, 4393–4403; (d) Liu, G.; Link, J. T.; Pei,
Z.; Reilly, E. B.; Leitza, S.; Nguyen, B.; Marsh, K. C.;
Okasinski, G. F.; von Geldern, T. W.; Ormes, M.; Fowler,
K.; Gallatin, M. J. Med. Chem. 2000, 43, 4025–4040; (e)
Li, Z.; Yang, Q.; Qian, X. Bioorg. Med. Chem. Lett. 2005,
13, 4864–4870; (f) Beard, R. L.; Colon, D. F.; Song, T. K.;
Davies, P. J. A.; Kochhar, D. M.; Chandratna, R. A. S. J.
Med. Chem. 1996, 39, 3556–3563; (g) Wang, Y.; Chackal-
mannil, S.; Chang, W.; Greenlee, W.; Ruperto, V.; Duffy,
R. A.; McQuade, R.; Lachowicz, J. E. Bioorg. Med. Chem.
Lett. 2001, 11, 891–894; (h) Pinchart, A.; Dallaire, C.;
Gingras, M. Tetrahedron Lett. 1998, 39, 543–546; (i) Yu,
C. J.; Chong, Y.; Kayyem, J. F.; Gozin, M. J. Org. Chem.
1999, 64, 2070–2079.
10. Backes, B. J.; Longenecker, K.; Hamilton, G. L.; Stewart,
K.; Lai, C.; Kopecka, H.; von Geldern, T. W.; Madar, D.
J.; Pei, Z.; Lubben, T. H.; Zinker, B. A.; Tian, Z.; Ballaron,
S. J.; Stashko, M. A.; Mika, A. K.; Beno, D. W. A.; Kempf-
Grote, A. J.; Black-Schaefer, C.; Sham, H. L.; Trevillyan,
J. M. Bioorg. Med. Chem. Lett. 2007, 17, 2005–2012.
11. Preparation of 1: A mixture of 2 (1.30 g, 4.80 mmol) and 3
(2.0 g, 4.80 mmol) in CH3CN (16 mL) was stirred at 80 °C
for 30 min.13 After cooling to room temperature, the solids
were collected and washed with hexanes three times.
Compound 4 was obtained as a white solid (2.20 g, 83%
yield). Using our coupling procedure (Ref. 9), 4 (110 mg,