Published on Web 04/06/2007
Minor Groove Hydrogen Bonds and the Replication of
Unnatural Base Pairs
Shigeo Matsuda, Aaron M. Leconte, and Floyd E. Romesberg*
Contribution from the Department of Chemistry, The Scripps Research Institute,
10550 N. Torrey Pines Road, La Jolla, California 92037
Received November 19, 2006; E-mail: floyd@scripps.edu
Abstract: As part of an effort to expand the genetic alphabet, we examined the synthesis of DNA with six
different unnatural nucleotides bearing methoxy-derivatized nucleobase analogues. Different nucleobase
substitution patterns were used to systematically alter the nucleobase electronics, sterics, and hydrogen-
bonding potential. We determined the ability of the Klenow fragment of E. coli DNA polymerase I to
synthesize and extend the different unnatural base pairs and mispairs under steady-state conditions. Unlike
other hydrogen-bond acceptors examined in the past, the methoxy groups do not facilitate mispairing,
implying that they are not recognized by any of the hydrogen-bond donors of the natural nucleobases;
however, they do facilitate replication. The more efficient replication results largely from an increase in the
rate of extension of primers terminating at the unnatural base pair and, interestingly, requires that the
methoxy group be at the ortho position where it is positioned in the developing minor groove and can form
a functionally important hydrogen bond with the polymerase. Thus, ortho methoxy groups should be generally
useful for the effort to expand the genetic alphabet.
1. Introduction
revealed that hydrophobic and packing forces were well suited
to mediate base pair stability and polymerase-mediated synthesis
(by insertion of the unnatural triphosphate opposite the unnatural
nucleotide in the template).10-12 However, the utility of these
unnatural base pairs has been consistently limited by insertion
of the next correct dNTP (i.e., extension).
More recently, a significant improvement in extension rate
has been achieved with several nucleobase analogues that have
relatively little aromatic surface area.6,9,22,23,25 Presumably, these
pairs form a more natural-like primer terminus, as opposed to
larger analogues that are likely to distort the primer terminus.
While the BEN self pair (formed between two identical BEN
analogues, Figure 1a) is not particularly stable24 or well
recognized by DNA polymerases,9 several derivatives have been
identified that form self pairs or heteropairs (formed between
two different analogues) with significantly improved properties.
For example, the 3FB,6 DM5,9,24 and TM9,11,12,24 nucleotides
(Figure 1a) form pairs that are reasonably stable and efficiently
synthesized by the exonuclease deficient Klenow fragment of
An unnatural base pair that is stable and replicable would
increase the biotechnological utility and information storage
potential of DNA.1-5 Toward this goal, we have examined
unnatural nucleotides that bear predominantly hydrophobic
nucleobase analogues.6-14 These analogues are expected to pair
with each other within duplex DNA via hydrophobic and
packing interactions but not with the natural nucleotides, due
to forced desolvation of the more hydrophilic natural nucleo-
bases. Our initial efforts focused on nucleobase analogues with
large aromatic surface areas and, along with other studies from
the Hirao,4,5,15 Kuchta,16,17 Kool,18,19 and Berdis20,21 labs,
(1) Henry, A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol. 2003, 7, 727-
733.
(2) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature 1990,
343, 33-37.
(3) Sismour, A. M.; Benner, S. A. Nucleic Acids Res. 2005, 33, 5640-5646.
(4) Hirao, I. Curr. Opin. Chem. Biol. 2006, 10, 622-627.
(5) Hirao, I.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Kawai, R.; Sato, A.; Harada,
Y.; Yokoyama, S. Nat. Methods 2006, 3, 729-735.
(6) Henry, A. A.; Olsen, A. G.; Matsuda, S.; Yu, C.; Geierstanger, B. H.;
Romseberg, F. E. J. Am. Chem. Soc. 2004, 126, 6923-6931.
(7) Henry, A. A.; Yu, C.; Romesberg, F. E. J. Am. Chem. Soc. 2003, 125,
9638-9646.
(16) Chiaramonte, M.; Moore, C. L.; Kincaid, K.; Kuchta, R. D. Biochemistry
2003, 42, 10472-10481.
(8) Hwang, G. T.; Romesberg, F. E. Nucleic Acids Res. 2006, 34, 2037-2045.
(9) Matsuda, S.; Henry, A. A.; Romesberg, F. E. J. Am. Chem. Soc. 2006,
128, 6369-6375.
(17) Kincaid, K.; Beckman, J.; Zivkovic, A.; Halcomb, R. L.; Engels, J. W.;
Kuchta, R. D. Nucleic Acids Res. 2005, 33, 2620-2628.
(18) Matray, T. J.; Kool, E. T. Nature 1999, 399, 704-708.
(19) Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. 1999, 121, 2323-2324.
(20) Zhang, X.; Lee, I.; Berdis, A. J. Biochemistry 2005, 44, 13101-13110.
(21) Zhang, X.; Lee, I.; Zhou, X.; Berdis, A. J. J. Am. Chem. Soc. 2006, 128,
143-149.
(10) McMinn, D. L.; Ogawa, A. K.; Wu, Y.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 1999, 121, 11585-11586.
(11) Ogawa, A. K.; Wu, Y.; Berger, M.; Schultz, P. G.; Romesberg, F. E. J.
Am. Chem. Soc. 2000, 122, 8803-8804.
(12) Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 2000, 122, 3274-3287.
(22) Kim, Y.; Leconte, A. M.; Hari, Y.; Romesberg, F. E. Angew. Chem., Int.
Ed. 2006, 45, 7809-7812.
(13) Tae, E. L.; Wu, Y. Q.; Xia, G.; Schultz, P. G.; Romesberg, F. E. J. Am.
Chem. Soc. 2001, 123, 7439-7440.
(23) Leconte, A. M.; Matsuda, S.; Hwang, G. T.; Romesberg, F. E. Angew.
Chem., Int. Ed. 2006, 45, 4326-4329.
(14) Yu, C.; Henry, A. A.; Romesberg, F. E.; Schultz, P. G. Angew. Chem., Int.
Ed. 2002, 41, 3841-3844.
(24) Matsuda, S.; Romesberg, F. E. J. Am. Chem. Soc. 2004, 126, 14419-
14427.
(15) Hirao, I.; Harada, Y.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Yokoyama, S.
J. Am. Chem. Soc. 2004, 126, 13298-12305.
(25) Adelfinskaya, O.; Nashine, V. C.; Bergstrom, D. E.; Davisson, V. J. J.
Am. Chem. Soc. 2005, 127, 16000-16001.
9
10.1021/ja068282b CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 5551-5557
5551