This research was financed by the NRSCC and the European
Union Marie Curie Excellence Grants, artizyme catalysis, contract
actions
Table 2 Asymmetric allylic substitution using dppdU as ligand
Conversion ee Absolute
Nucleophile Allyl
Solvent (%)
(%) configuration
THF
THF
.99a
82
70
S
S
Notes and references
{ Crystallographic data for dppdU: empirical formula C21H21N2O5P?
(H2O)0.25, formula weight = 416.87, temperature = 93(2) K, wavelength =
.99a
˚
0.71073 A, monoclinic, space group C2, a = 18.165(4) A, b = 5.1771(9) A,
˚
˚
3
21
˚
˚
c = 22.063(5) A, b = 108.12(3)u, V = 1972.0(7) A , Z = 4, m = 0.177 mm
,
Dc = 1.404 Mg m23, crystal size 0.2 6 0.1 6 0.01 mm, reflections collected
6287, independent reflections 3282 [Rint = 0.03]. Refinement method full-
matrix least-squares on F2, data/restraints/parameters 3282/4/278, good-
ness-of-fit on F2 = 1.110, R1 [I . 2s(I)] = 0.0527, wR2 = 0.1352, absolute
structure parameter = 0.02(14). CheckCIF does not reveal any serious
issues. CCDC 626863. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b617871e
THF
THF
.99b
.99b
15
12
S
S
a
1 (a) E. T. Kaiser and D. S. Lawrence, Science, 1984, 226, 505; (b)
M. E. Wilson and G. M. Whitesides, J. Am. Chem. Soc., 1978, 100, 306;
(c) D. Qi, C. M. Tann, D. Haring and M. D. Distefano, Chem. Rev.,
2001, 101, 3081; (d) M. T. Reetz, Proc. Natl. Acad. Sci. U. S. A., 2004,
101, 5716; (e) C. Letondor, N. Humbert and T. R. Ward, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 4683; (f) L. Panella, J. Broos, J. Jin,
M. W. Fraaije, D. B. Janssen, M. Jeronimus-Stratingh, B. L. Feringa,
A. J. Minnaard and J. G. de Vries, Chem. Commun., 2005, 5656.
2 H. Yamaguchi, T. Hirano, H. Kiminami, D. Taura and A. Harada,
Org. Biomol. Chem., 2006, 4, 3571.
3 H.-A. Wagenknecht, Angew. Chem., Int. Ed., 2003, 42, 3204.
4 (a) C. Tuerk and L. Gold, Science, 1990, 249, 505; (b) A. D. Ellington
and J. W. Szostak, Nature, 1990, 346, 818; (c) T. Hermann and
D. J. Patel, Science, 2000, 287, 820.
5 S. D. Jayasena, Clin. Chem. (Washington, DC, U. S.), 1999, 45,
1628.
6 J. Brunner, A. Mokhir and R. Kraemer, J. Am. Chem. Soc., 2003, 125,
12410.
7 G. Roelfes and B. L. Feringa, Angew. Chem., Int. Ed., 2005, 44,
3230.
8 S. K. Silverman, Org. Biomol. Chem., 2004, 2, 2701.
9 G. Roelfes, A. J. Boersma and B. L. Feringa, Chem. Commun., 2006,
635.
Reaction conditions: 7.5 mmol [Pd(allyl)Cl]2, amine : allyl acetate :
Pd : L = 120 : 40 : 1 : 2, solvent 2 cm3, 25 uC, 24 h. Reaction
conditions: 7.5 mmol [Pd(allyl)Cl]2, nucleophile : BSA (N,O-bis-
(trimethylsilyl)acetamide) : allyl acetate : Pd : L = 120 : 120 : 40 : 1 :
2, KOAc 1 mg, solvent 2 cm3, 25 uC, 2 h.
b
the formation of Cl2Pt(dppdU)2 in a cis conformation, showing a
singlet in the 31P NMR spectrum at d = 15.7 ppm with large
platinum–phosphine coupling (satellite JP–Pt = 5344 Hz). When the
same complex is formed in acetonitrile-d3–methanol (2 drops
added for solubility), the 31P NMR spectrum shows a signal at d =
14.2 ppm with a considerably smaller platinum–phosphine
coupling (satellite JP–Pt = 2660 Hz), indicating a change to a trans
conformation. Also, a single complex is obtained when dppdU is
reacted with MeClPd(COD), showing a singlet in the 31P NMR
spectrum (d = 22.3 ppm, DMSO-d6) characteristic of a trans
complex.
In summary, we report the Pd catalyzed synthesis of nucleosides
and oligonucleotides functionalized with phosphine moieties and
their use as ligands for asymmetric catalytic substitution reactions.
Secondary interactions (such as hydrogen bonding) are believed to
rule the transfer of chirality from the distant sugar to the
phosphine as both the solvent and the substituent of the ribose
modify the stereoselectivity of the reaction. Importantly, the
catalytic reaction does proceed in water as solvent, which allows
the use of longer DNA sequences. This opens an efficient route to
introduce a phosphine ligand at any position of oligonucleotides,
adding an important new possibility for the application of DNA
aptamers in the field of transition metal catalysis.
10 P. W. K. Rothemund, Nature, 2006, 440, 297.
11 E. Winfree, F. Liu, L. A. Wenzler and N. C. Seeman, Nature, 1998, 394,
539; N. Seeman, Biochemistry, 2003, 42, 7259; B. Samori and
G. Zuccheri, Angew. Chem., Int. Ed., 2005, 44, 1166.
12 T. R. Cech, Science, 1987, 236, 1532.
13 (a) K. Sakurai, T. M. Snyder and D. R. Liu, J. Am. Chem. Soc., 2005,
127, 1660; (b) Z. J. Gartner, M. W. Kanan and D. R. Liu, J. Am. Chem.
Soc., 2002, 124, 10304.
14 The alternative routes, protection of the dppdU phosphoramidite
compound by BH3 during DNA synthesis or deprotection of the
oligonucleotides from the support followed by a palladium catalyzed
P–C coupling reaction in an aqueous medium, failed to give the expected
product.
1558 | Chem. Commun., 2007, 1556–1558
This journal is ß The Royal Society of Chemistry 2007