Published on Web 04/14/2007
Photochromism of Diarylethene Single Molecules in Polymer
Matrices
Tuyoshi Fukaminato,† Tohru Umemoto,† Yasuhide Iwata,† Satoshi Yokojima,‡
Mitsuru Yoneyama,‡ Shinichiro Nakamura,‡ and Masahiro Irie*,†
Contribution from the Department of Chemistry and Biochemistry, Graduate School of
Engineering, Kyushu UniVersity, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan, and
Mitsubishi Chemical Group, Science and Technology Research Center, Inc. and CREST-JST,
1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Received December 20, 2006; E-mail: iriem@rikkyo.ac.jp
Abstract: Robust fluorescent photoswitching molecules, having perylene bisimide as the fluorescent unit
and diarylethene as the switching unit, were prepared, and their photochromic reactions were measured
at the single-molecule level in various polymer matrices. The histograms of the fluorescent on and off
times were found to deviate from normal exponential distribution and showed a peak when the molecules
are embedded in rigid polymer matrices, such as Zeonex or poly(methyl methacrylate) (PMMA). In soft
polymer matrices, such as poly(n-buthyl methacrylate) (PnBMA), exponential distribution was observed
for the on and off times. The abnormal distribution suggests that the quantum yields of the photoreactions
are not constant and the molecules undergo the reactions after absorbing a certain number of photons. A
multilocal minima model was proposed to explain the environmental effect.
is useful not only to probe microenvironments15,20-26 but also
to characterize the photochemical reactivity of individual
molecules.27 The detailed analysis of the reactivity of each
molecule is indispensable to develop ultrahigh-density single-
Introduction
Recent advances in fluorescence microscopy have allowed
detection, imaging, and spectroscopy of single molecules at
room temperature.1-19 The single molecule detection technique
(15) Deschenes, L. A.; Vanden Bout, D. A. Science 2001, 292, 255-258.
(16) Hofkens, J.; Maus, M.; Gensch, T.; Vosch, T.; Cotlet, M.; Ko¨hn, F.;
Herrmann, A.; Mu¨llen, K.; De Schryver, F. C. J. Am. Chem. Soc. 2000,
122, 9278-9288.
† Kyushu University.
‡ Mitsubishi Chemical Group, Science and Technology Research Center,
Inc. and CREST-JST.
(1) Examples of reviews and special issues for single molecule detection: (a)
Ambrose, W. P.; Goodwin, P. M.; Jett, J. H.; Orden, A. V.; Werner, J. H.;
Keller, R. A. Chem. ReV. 1999, 99, 2929-2956. (b) Xie, X. S.; Trautman,
J. K. Annu. ReV. Phys. Chem. 1998, 49, 441-480. (c) Tamarat, P.; Maali,
A.; Lounis, B.; Orrit, M. J. Phys. Chem. A 2000, 104, 1-16. (d) Moerner,
W. E. J. Phys. Chem. B 2002, 106, 910-927. (e) Basche´, T.; Moerner, W.
E.; Orrit, M.; Wild, U. P. Single-Molecule Optical Detection, Imaging and
Spectroscopy; Wiely-VCH: Weinheim, Germany, 1997. (f) Rigler, R.; Orrit,
M.; Basche´, T. Single Molecule Spectroscopy-Nobel Conference Lecture;
Springer-Verlag: Berlin, Heidelberg, Germany, 2001. (g) Kraayenhof, R.;
Visser, A. J. W. G.; Gerritsen, H. C. Fluorescence Spectroscopy, Imaging
and Probes-New Tools in Chemical, Physical and Life Sciences; Springer-
Verlag: Berlin, Heidelberg, Germany, 2002. (h) Zander, C.; Enderlein, J.;
Keller, R. A. Single Molecule Detection in Solution: Method and
Application; Wiely-VCH: Weinheim, Germany, 2002. (i) Tinnefeld, P.;
Sauer, M. Angew. Chem., Int. Ed. 2005, 44, 2642-2671.
(2) Betzig, E.; Chichester, R. J. Science 1993, 262, 1422-1425.
(3) Nie, S.; Chiu, D. T.; Zare, R. N. Science 1994, 266, 1018-1021.
(4) Trautman, J. K.; Macklin, J. J.; Brus, L. E.; Betzig, E. Nature 1994, 369,
40-42.
(17) Dickson, R. M.; Cubitt, A. B.; Tsien, R. Y.; Moerner, W. E. Nature 1997,
388, 355-358.
(18) Kulzer, F.; Kummer, S.; Matzke, R.; Bra¨uchle, C.; Basche´, T. Nature 1997,
387, 688-691.
(19) Funatsu, T.; Harada, Y.; Tokunaga, M.; Saito, K.; Yanagida, T. Nature
1995, 374, 555-559.
(20) (a) Deschenes, L. A.; Vanden Bout, D. A. J. Phys. Chem. B 2002, 106,
11438-11445. (b) Deschenes, L. A.; Vanden Bout, D. A. J. Phys. Chem.
B 2001, 105, 11978-11985.
(21) (a) Wang, H.; Bardo, A. M.; Collinson, M. M.; Higgins, D. A. J. Phys.
Chem. B 1998, 102, 7231-7237. (b) Mei, E.; Bardo, A. M.; Collinson, M.
M.; Higgins, D. A. J. Phys. Chem. B 2000, 104, 9973-9980. (c) Seebacher,
C.; Hellriegel, C.; Bra¨uchle, C.; Ganschow, M.; Wo¨hrle, D. J. Phys. Chem.
B 2003, 107, 5445-5452. (d) Hellriegel, C.; Kirstein, J.; Bra¨uchle, C.;
Latour, V.; Pigot, T.; Olivier, R.; Lacombe, S.; Brown, R.; Guieu, V.;
Payrastre, C.; Izquierdo, A.; Mocho, P. J. Phys. Chem. B 2004, 108, 14699-
14709. (e) Hellriegel, C.; Kirstein, J.; Bra¨uchle, C. New J. Phys. 2005, 7,
23.
(22) Weston, K. D.; Carson, P. J.; Metiu, H.; Buratto, S. K. J. Chem. Phys.
1998, 109, 7474-7485.
(5) Ambrose, W. P.; Goodwin, P. M.; Martin, J. C.; Keller, R. A. Science
1994, 265, 364-367.
(23) Osborne, M. A.; Barnes, C. L.; Balasubramanian, S.; Klenerman, D. J.
Phys. Chem. B 2001, 105, 3120-3126.
(6) Moerner, W. E. Science 1994, 265, 46-53.
(24) Valle´e, R. A. L.; Tomczak, N.; Kuipers, L.; Vancso, G. J.; van Hulst, N.
F. Phys. ReV. Lett. 2003, 91, 038301-1-038304.
(7) Xie, X. S.; Dunn, R. C. Science 1994, 265, 361-364.
(8) Basche´, T.; Kummer, S.; Bra¨uchle, C. Nature 1995, 373, 132-134.
(9) Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Science 1996,
272, 255-258.
(25) (a) Schmidt, Th.; Schu¨tz, G. J.; Baumgartner, W.; Gruber, H. J.; Schindler,
H. J. Phys. Chem. 1995, 99, 17662-17668. (b) Talley, C. E.; Dunn, R. C.
J. Phys. Chem. B 1999, 103, 10214-10220.
(10) Lu, H. P.; Xie, X. S. Nature 1997, 385, 143-146.
(11) Ha, T.; Enderle, T.; Chemla, D. S.; Selvin, P. R.; Weiss, S. Phys. ReV.
Lett. 1996, 77, 3979-3982.
(26) Valle´e, R. A. L.; Cotlet, M.; Van der Auweraer, M.; Hofkens, J.; Mu¨llen,
K.; De Schryver, F. C. J. Am. Chem. Soc. 2004, 126, 2296-2297.
(27) (a) Heilemann, M.; Margeat, E.; Kasper, R.; Sauer, M.; Tinnefeld, P. J.
Am. Chem. Soc. 2005, 127, 3801-3806. (b) Mei, E.; Vinogradov, S.;
Hochstrasser, R. M. J. Am. Chem. Soc. 2003, 125, 13198-13204. (c)
Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki,
A.; Hofkens, J. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9511-9516. (d)
Roeffaers, M. B. J.; Sels, B. F.; Uji-i, H.; De Schryver, F. C.; Jacobs, P.
A.; De Vos, D. E.; Hofkens, J. Nature 2006, 439, 572-575.
(12) Lu, H. P.; Xun, L.; Xie, X. S. Science 1998, 282, 1877-1882.
(13) Veerman, J. A.; Garcia-Parajo, M. F.; Kuipers, L.; van Hulst, N. F. Phys.
ReV. Lett. 1999, 83, 2155-2158.
(14) (a) Vanden Bout, D. A.; Yip, W. T.; Hu, D. H.; Fu, D. K.; Swager, T. M.;
Barbara, P. F. Science 1997, 277, 1074-1077. (b) Yu, J.; Hu, D.; Barbara,
P. F. Science 2000, 289, 1327-1330.
9
5932
J. AM. CHEM. SOC. 2007, 129, 5932-5938
10.1021/ja069131b CCC: $37.00 © 2007 American Chemical Society