paper, we demonstrate that chiral molecular clips5 based on
glycoluril constitute a robust supramolecular synthon that
controls enantioselective heterochiral dimerization followed
by H-bond or metal-ligand mediated supramolecular po-
lymerization that mimics some of the essential elements of
hierarchical organization seen in natural systems.
The popularity of glycoluril as a building block in
supramolecular chemistry can be traced to the pioneering
work of Nolte and Rebek on molecular clips5a and capsules,6
respectively, and is currently fuelled by interest in the
cucurbit[n]uril family7 of macrocycles. It was not until
recently, however, that the potential of glycoluril building
blocks in crystal engineering studies was realized.8 To
investigate the robustness of glycoluril molecular clips5a,8d,e
as an orthogonal synthon toward programmed crystalline
organization, we synthesized compounds (()-1-(()-6 (Fig-
ure 1 and Supporting Information) by Pd-catalyzed coupling
stituted aromatic wall that yields chiral, but racemic, clips;
and (3) the presence of functional groups (CtCH, OCH3,
NH2, pyridyl) with the potential to engage in H-bonding or
metal-ligand interactions.
We were fortunate to be able to obtain X-ray quality
crystals of (()-1-(()-6 by recrystallization from CH2Cl2
with MeOH or CH3CN as cosolvent and solve their struc-
tures. Figure 2a shows the structure of (()-1 in the crystal.
Figure 1. Molecular clips used in this study (R ) CO2Et).
Figure 2. Cross-eyed stereoviews of the X-ray crystal structures
of (a) (()-1, (b) (()-2, and (c) (()-3. Color coding: C, gray; H,
white; N, blue; O, red; I, purple.
reactions of terminal acetylenes with iodo-clip (()-1. The
critical design elements in choosing targets (()-2-(()-6
included the following: (1) one 1,4-dimethoxyxylylene wall
to induce dimerization;8d,e (2) a second differentially sub-
In contrast to (()-2-(()-6 (vide infra) and six other 1,4-
dimethoxyxylylene walled clips prepared previously by us,8e
(()-1 does not undergo CH‚‚‚O and π-π interaction
mediated cleft-cleft dimerization in the crystal. Instead,
(()-1 undergoes π-π interactions along the ab diagonal to
yield a tape-like array3f of the monomeric building unit (e.g.,
1° structural array). Interestingly, the π-π interactions occur
between identical aromatic walls (e.g., Ar-I with Ar-I) of
molecules of 1 of opposite handedness (e.g., (+)-1‚‚‚(-)-
1‚‚‚(+)-1). The clefts of (()-1 are filled by CO2Et groups
from molecules of (()-1 in an adjacent tape.
(4) (a) Holman, K. T.; Pivovar, A. M.; Ward, M. D. Science 2001, 294,
1907-1911. (b) Aakero¨y, C. B.; Beatty, A. M. Angew. Chem., Int. Ed.
2001, 40, 3240-3242. (c) Aakero¨y, C. A.; Beatty, A. M.; Helfrich, B. A.
J. Am. Chem. Soc. 2002, 124, 14423-14432. (d) Banerjee, R.; Mondal,
R.; Howard, J. A. K.; Desiraju, G. Cryst. Growth Des. 2006, 6, 999-1009.
(5) For leading references to (chiral) molecular clips, see: (a) Rowan,
A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Acc. Chem. Res. 1999, 32,
995-1006. (b) Zimmerman, S. C. Top. Curr. Chem. 1993, 165, 71-102.
(c) Klaerner, F.-G.; Kahlert, B. Acc. Chem. Res. 2003, 36, 919-932. (d)
Harmata, M. Acc. Chem. Res. 2004, 37, 862-873. (e) Artacho, J.; Nilsson,
P.; Bergquist, K.-E.; Wendt, O. F.; Warnmark, K. Chem.sEur. J. 2006,
12, 2692-2701. (f) Stoncius, S.; Orentas, E.; Butkus, E.; O¨ hrstro¨m, L.;
Wendt, O. F.; Wa¨rnmark, K. J. Am. Chem. Soc. 2006, 128, 8272-8285.
(g) Cheng, K.-W.; Lai, C.-C.; Chiang, P.-T.; Chiu, S.-H. Chem. Commun.
2006, 2854-2856.
(8) (a) Johnson, D. W.; Palmer, L. C.; Hof, F.; Iovine, P. M.; Rebek, J.,
Jr. Chem. Commun. 2002, 2228-2229. (b) Wu, A.; Fettinger, J. C.; Isaacs,
L. Tetrahedron 2002, 58, 9769-9777. (c) Johnson, D. W.; Hof, F.; Palmer,
L. C.; Martin, T.; Obst, U.; Rebek, J., Jr. Chem. Commun. 2003, 1638-
1639. (d) Reek, J. N. H.; Elemans, J. A. A. W.; de Gelder, R.; Barbara´, J.;
Rowan, A. E.; Nolte, R. J. M. Tetrahedron 2003, 59, 175-185. (e) Wang,
Z.-G.; Zhou, B.-H.; Chen, Y.-F.; Yin, G.-D.; Li, Y.-T.; Wu, A.-X.; Isaacs,
L. J. Org. Chem. 2006, 71, 4502-4508.
(6) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr. Angew. Chem., Int.
Ed. 2002, 41, 1488-1508.
(7) (a) Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew.
Chem., Int. Ed. 2005, 44, 4844-4870. (b) Lee, J. W.; Samal, S.; Selvapalam,
N.; Kim, H.-J.; Kim, K. Acc. Chem. Res. 2003, 36, 621-630.
1900
Org. Lett., Vol. 9, No. 10, 2007