3586
M. Alajarı´n et al. / Tetrahedron Letters 48 (2007) 3583–3586
(75.4 MHz, CDCl3): d 8.68 (a-CH3), 27.50 (CH3C),
36.73–37.26 (m, 3CH2P), 38.98 (q, 2J(C,P) = 3.8 Hz;
CH3C), 50.09 (CH2N), 52.57 (CH2N), 55.84 (CH),
112.49 (q), 112.59 (q), 115.32, 123.16 (d, 3J(C,P) = 12.7 Hz;
s-cis-CH@C–N@P), 123.99 (d, 3J(C,P) = 12.2 Hz;
s-cis-CH@C–N@P), 124.45 (d, 3J(C,P) = 12.7 Hz; s-cis-
CH@C–N@P), 125.43 (d, 3J(C,P) = 28.3 Hz; s-trans-
CH@C–N@P), 127.19 (d, 3J(C,P) = 28.6 Hz; s-trans-
CH@C–N@P), 127.29 (d, 3J(C,P) = 28.7 Hz; s-trans-
CH@C–N@P), 128.34–132.80, 140.24 (q), 140.37 (q),
145.06 (q), 150.73 (3 q); 31P{1H} NMR (121.4 MHz,
CDCl3): d 0.44 (s, 1P), 1.36 (s, 1P), 1.54 (s, 1P); IR (Nujol):
m = 1453 (CP), 1118 (NP) cmꢀ1; MS (FAB+): m/z
(%) = 1124 (13) [M++4], 1122 (13) [M++2], 1121 (11)
[M++1], 1120 (6) [M+], 133 (100); C63H57Br2N4P3
(1122.88): Calcd C, 67.39, H, 5.12, N, 4.99. Found: C,
67.50, H, 5.07, N, 5.13.
stereocontrol is gradually less effective as the size of the
i
t
pivotal group increases (Et, Pr, Bu), whereas the cen-
ter-to-propeller stereocontrol remains equally effective.
Large pivotal groups in the lower hemisphere increase
the conformational lability of this moiety.
Acknowledgments
This work was supported by the MEC and FEDER
´
´
(Project CTQ2005-02323/BQU) and Fundacion Sene-
ca-CARM (Project 00458/PI/04). J.B. also thanks the
MEC for a fellowship.
Tri-k5-phosphazenes 4h + 4h0 (diastereoisomers ratio
References and notes
1
3.5:1): Yield: 42%; H NMR (300 MHz, CDCl3): d ꢀ0.41
[d, J(H,H) = 6.9 Hz, 3H; (CH3)A (h)], ꢀ0.29 [d,
J(H,H) = 6.9 Hz, 3H; (CH3)A (h0)], ꢀ0.23 [d, J(H,H) =
6.9 Hz, 3H; (CH3)B (h)], ꢀ0.03 [d, J(H,H) = 6.9 Hz, 3H;
(CH3)B (h0)], 0.93 [m, 2H; CH(CH3)2 (h + h0)], 1.13 [d,
J(H,H) = 6.7 Hz, 3H; a-CH3 (h0)], 1.26 [d, J(H,H) =
6.9 Hz, 3H; a-CH3 (h)], 2.90 [d, J(H,H) = 12.6 Hz, 1H;
CHAHBN (h)], 2.94 [d, J(H,H) = 12.2 Hz, 1H; CHAHBN
(h)], 3.03 [d, J(H,H) = 16.5 Hz, 1H; CHAHBN (h0)], 3.24
[d, J(H,H) = 16.5 Hz, 1H; CHAHBN (h0)], 3.45–4.31 [m,
18H; 4 CHAHBN (h + h0) + 12 CH2P (h + h0) + 2 CHCH3
(h + h0)], 6.25 (br s, 1H; Harom), 6.30 (br s, 2H; Harom), 6.52
(d, J(H,H) = 7.2 Hz, 1H; Harom), 6.97–7.53 [m, 64H; Harom
(h + h0)], 7.96–8.00 [m, 12H; Harom (h + h0)]; 13C{1H}
NMR (75.4 MHz, CDCl3): d = 8.00 [a-CH3 (h0)], 8.28 [a-
CH3 (h)], 19.30 [(CH3)A (h)], 19.72 [(CH3)A (h0)], 20.01
[(CH3)B (h)], 20.08 [(CH3)B (h0)], 35.34 [(CH3)2CH (h)],
35.39 [(CH3)2CH (h0)], 36.60–37.40 [m, 3CH2P (h + h0)],
47.07 [q, 2J(C,P) = 3.1 Hz; (CH3)2CHC (h)], 49.48 [q,
2J(C,P) = 3.6 Hz; (CH3)2CHC (h0)], 49.77 [CH2N (h)],
49.98 [CH2N (h)], 50.38 [CH2N (h0)], 52.51 [CH2N (h0)],
55.21 [CHCH3 (h)], 57.77 [CHCH3 (h0)], 115.02 (h), 115.83
(h0), 122.46 [2 q; (h/h0)], 122.57 [2 q;(h/h0)], 123.27 [d,
3J(C,P) = 12.8 Hz; s-cis-CH@C–N@P (h)], 123.97 [d,
3J(C,P) = 12.2 Hz; s-cis-CH@C–N@P (h)], 124.44 [d,
3J(C,P) = 12.2 Hz; s-cis-CH@C–N@P (h)], 125.54 [d,
3J(C,P) = 27.8 Hz; s-trans-CH@C–N@P (h)], 126.70 [d,
3J(C,P) = 27.3 Hz; s-trans-CH@C–N@P (h)], 126.81 [d,
3J(C,P) = 27.3 Hz; s-trans-CH@C–N@P (h)], 127.84–
133.55 (h + h0), 136.42 [q; (h0)], 136.66 [q; (h0)], 138.05 [q;
(h)], 144.70 [q; (h)], 144.82 [q; (h0)], 149.71 [q; (h0)], 149.93 [2
q; (h)], 150.47 [2 q; (h0)], 150.59 [q; (h)]. Only signals clearly
observed for the minor diastereoisomer are detailed;
31P{1H} NMR (121.4 MHz, CDCl3): d ꢀ0.90 [s, 1P; (h0)],
ꢀ0.07 [s, 1P; (h0)], 0.55 [s, 1P; (h0)], 2.75 [s, 1P; (h)], 4.07 [s,
2P; (h)]; IR (Nujol): m = 1444 (CP), 1114 (NP) cmꢀ1; MS
(FAB+): m/z (%) = 1064 (76) [M++4], 1062 (100) [M++2],
1060 (37) [M+]; C65H61Cl2N4P3 (1062.03): Calcd C, 73.51,
H, 5.79, N, 5.28. Found: C, 73.64, H, 5.82, N, 5.19.
11. (a) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem.
Soc. 1990, 112, 8251; (b) Cheeseman, J. R.; Trucks, G. W.;
Keth, T.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497; (c)
Helgaker, T.; Jaszunski, M.; Ruud, K. Chem. Rev. 1999,
99, 293.
´
´
´
1. Alajarın, M.; Vidal, A.; Lopez-Leonardo, C.; Berna, J.;
´
Ramırez de Arellano, M. C. Tetrahedron Lett. 1998, 39,
7807.
´
´
´
2. Alajarın, M.; Lopez-Leonardo, C.; Berna, J. Tetrahedron
2006, 62, 6190.
3. (a) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2,
635; (b) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L.
F. Tetrahedron 1981, 37, 437; (c) Gololobov, Y. G.;
Kasukhin, L. F. Tetrahedron 1992, 48, 1353; (d) Johnson,
A. W. Ylides and Imines of Phosphorus; Wiley: New York,
1993, p 403.
4. Alajarın, M.; Lopez-Leonardo, C.; Vidal, A.; Berna, J.;
Steed, J. W. Angew. Chem., Int. Ed. 2002, 41, 1205.
5. Comparable situations have been found in: (a) McIntosh,
J. M. J. Org. Chem. 1982, 47, 3777; (b) Canary, J. W.;
Allen, C. S.; Castagnetto, J. M.; Wang, Y. J. Am. Chem.
1995, 117, 8484; (c) Canary, J. W.; Allen, C. S.;
Castagnetto, J. M.; Chiu, Yu.-H.; Toscano, P. J.; Wang,
Y. Inorg. Chem. 1998, 37, 6255; (d) Chiu, Yu-H.; Dos
Santos, O.; Canary, J. W. Tetrahedron 1999, 55, 12069; (e)
Zahn, S.; Das, D.; Canary, J. W. Inorg. Chem. 2005, 45,
6056.
´
´
´
6. Merrill, S. H.; Unruh, C. C. U.S. Patent 3,002,003, 1959;
Merrill, S. H.; Unruh, C. C. Chem. Abstr. 1962, 56, 4961i.
7. (a) Fort, G.; McLean, A. J. Am. Chem. Soc. 1948, 1902;
(b) Latour, S.; Wuest, J. D. Synthesis 1987, 742; (c)
Janssen, B. C.; Asam, A.; Huttner, G.; Sernau, V.;
Zsolnai, L. Chem. Ber. 1994, 127, 501.
8. Ott, J.; Venanzi, L. M.; Ghilardi, C. A.; Midollini, S.;
Orlandini, A. J. Organomet. Chem. 1985, 291, 89.
9. Tris(phosphanes) 3d and 3e were prepared following the
same experimental procedure used for 3c, as reported in
Ref. 8.
10. Tri-k5-phosphazene 4c: Yield: 89%; mp 259–261 °C (yel-
low prisms from chloroform/n-pentane); 1H NMR
(300 MHz, CDCl3): d ꢀ0.76 (s, 3H; CH3), 1.42 (d,
J(H,H) = 6.8 Hz, 3H; a-CH3), 3.20 (m, 5H;
2
CHAHBN + 3 CHAHBP), 3.56 (d, J(H,H) = 12.1 Hz, 1H;
CHAHBN), 3.69 (q, J(H,H) = 6.8 Hz, 1H; CH), 3.85 (d,
J(H,H) = 12.9 Hz, 1H; CHAHBN), 3.90 (m, 3H;
CHAHBP), 6.32 (d, J(H,H) = 2.8 Hz, 1H; Harom), 6.35
(br s, 1H; Harom), 6.41 (d, J(H,H) = 2.8 Hz, 1H; Harom),
6.66 (d, J(H,H) = 6.6 Hz, 1H; Harom), 6.95 (dd, J(H,H) =
5.8, 2.9 Hz, 1H; Harom), 6.98 (dd, J(H,H) = 5.8, 2.9 Hz,
2H; Harom), 7.10–7.13 (m, 5H; Harom), 7.26–7.45 (m, 22H;
12. MM+ force field as implemented in the HyperChem 6.0
molecular modeling program (Hypercube, Inc; http://
H
arom), 7.79–7.91 (m, 6H; Harom); 13C{1H} NMR