Journal of the American Chemical Society
Communication
342, 825. (c) Green, M. T.; Dawson, J. H.; Gray, H. B. Science 2004,
304, 1653. (d) A neutron diffraction study provided evidence for a
protonated Cpd-II in a His-ligated ascorbate peroxidase. See: Kwon,
H.; Basran, J.; Casadei, C. M.; Fielding, A. J.; Schrader, T. E.;
Ostermann, A.; Devos, J. M.; Aller, P.; Blakeley, M. P.; Moody, P. C.
E.; Raven, E. L. Nat. Commun. 2016, 7, 13445.
(4) (a) Liu, H.-Y.; Yam, F.; Xie, Y.-T.; Li, X.-Y.; Chang, C. K. J. Am.
Chem. Soc. 2009, 131, 12890. (b) Simkhovich, L.; Mahammed, A.;
Goldberg, I.; Gross, Z. Chem. - Eur. J. 2001, 7, 1041.
(5) Stone, K. L.; Behan, R. K.; Green, M. T. Proc. Natl. Acad. Sci. U. S.
A. 2006, 103, 12307.
(6) Spaeth, A. D.; Gagnon, N. L.; Dhar, D.; Yee, G. M.; Tolman, W.
B. J. Am. Chem. Soc. 2017, 139, 4477.
(7) (a) Walker, F. A.; Licoccia, S.; Paolesse, R. J. Inorg. Biochem.
2006, 100, 810. (b) Ye, S.; Tuttle, T.; Bill, E.; Simkhovich, L.; Gross,
Z.; Thiel, W.; Neese, F. Chem. - Eur. J. 2008, 14, 10839.
(8) Leeladee, P.; Jameson, G. N. L.; Siegler, M. A.; Kumar, D.; de
Visser, S. P.; Goldberg, D. P. Inorg. Chem. 2013, 52, 4668.
(9) Trityl radical has been employed to study analogous NR transfer
reactions from Cu- and Fe-N(H)Ar species. See: (a) Jang, E. S.;
described in the framework of the rebound process shown in
Scheme 1 for over 40 years. However, until now, the critical
rebound step could not be observed and studied directly. In this
report, we have described the first direct examination of a
rebound hydroxylation, in which a well-defined Fe(OH)
porphyrinoid complex is reacted with a series of carbon
radicals. A key to this study was the use of a corrole ligand to
isolate an Fe(OH) complex that is at the same oxidation level
as the Cpd-II intermediate in heme enzymes. Such a species
was previously unknown in porphyrinoid models of heme
enzymes. The kinetic measurements provide a mechanistic
assessment of the radical hydroxylation step, leading to a model
for the rebound process that has both concerted and stepwise
pathways, analogous to the well-known paradigm for HAT.
Taken together, the data point to a more concerted process for
rebound. With the precedent established here, the factors that
favor and control rebound hydroxylation over other pathways,
such as desaturation,14a,b halogenation,14c,d or radical cage
escape,14e may now be amenable to direct interrogation.
McMullin, C. L.; Kaß, M.; Meyer, K.; Cundari, T. R.; Warren, T. H. J.
̈
Am. Chem. Soc. 2014, 136, 10930. (b) Iovan, D. A.; Betley, T. A. J. Am.
Chem. Soc. 2016, 138, 1983.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(10) It is possible that the trityl alcohol product could remain
coordinated to the FeIII center, or exist in an equilibrium between
bound and unbound states in solution.
(11) Colclough, N.; Smith, J. R. L. J. Chem. Soc., Perkin Trans. 2 1994,
2, 1139.
S
Experimental details (PDF)
(12) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta, Rev. Bioenerg.
1985, 811, 265.
Data for C91H59ClFeN4 (CIF)
Data for C91H60FeN4O•C5H12 (CIF)
(13) (a) Osako, T.; Ohkubo, K.; Taki, M.; Tachi, Y.; Fukuzumi, S.;
Itoh, S. J. Am. Chem. Soc. 2003, 125, 11027. (b) Lee, J. Y.; Peterson, R.
L.; Ohkubo, K.; Garcia-Bosch, I.; Himes, R. A.; Woertink, J.; Moore,
C. D.; Solomon, E. I.; Fukuzumi, S.; Karlin, K. D. J. Am. Chem. Soc.
2014, 136, 9925. (c) Asaka, M.; Fujii, H. J. Am. Chem. Soc. 2016, 138,
8048.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
(14) (a) Grant, J. L.; Mitchell, M. E.; Makris, T. M. Proc. Natl. Acad.
Sci. U. S. A. 2016, 113, 10049. (b) Rettie, A. E.; Rettenmeier, A. W.;
Howald, W. N.; Baillie, T. A. Science 1987, 235, 890. (c) Wong, S. D.;
Srnec, M.; Matthews, M. L.; Liu, L. V.; Kwak, Y.; Park, K.; Bell, C. B.,
III; Alp, E. E.; Zhao, J.; Yoda, Y.; Kitao, S.; Seto, M.; Krebs, C.;
Bollinger, J. M.; Solomon, E. I. Nature 2013, 499, 320. (d) Galonic, D.
P.; Barr, E. W.; Walsh, C. T.; Bollinger, J. M.; Krebs, C. Nat. Chem.
Biol. 2007, 3, 113. (e) Cho, K.-B.; Hirao, H.; Shaik, S.; Nam, W. Chem.
Soc. Rev. 2016, 45, 1197.
̈
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors acknowledge support by the NIH (Grant
GM101153 to D.P.G. and Grant GM101390 to M.T.G.).
J.P.T.Z. thanks JHU for the Glen E. Meyer ’39 Fellowship. We
also thank Dr. R. Baglia for helpful discussions, and T. Pangia
for the synthesis of some compounds.
REFERENCES
■
(1) (a) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.
(b) Kovaleva, E. G.; Lipscomb, J. D. Nat. Chem. Biol. 2008, 4, 186.
(c) Chen, M. S.; White, M. C. Science 2007, 318, 783. (d) Kudrik, E.
́
V.; Afanasiev, P.; Alvarez, L. X.; Dubourdeaux, P.; Clemancey, M.;
Latour, J.-M.; Blondin, G.; Bouchu, D.; Albrieux, F.; Nefedov, S. E.;
Sorokin, A. B. Nat. Chem. 2012, 4, 1024. (e) Rittle, J.; Green, M. T.
Science 2010, 330, 933. (f) Huang, X.; Groves, J. T. J. Biol. Inorg. Chem.
2017, 22, 185. (g) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.;
Thiel, W. Chem. Rev. 2005, 105, 2279.
(2) (a) Boaz, N. C.; Bell, S. R.; Groves, J. T. J. Am. Chem. Soc. 2015,
137, 2875. (b) Hill, E. A.; Weitz, A. C.; Onderko, E.; Romero-Rivera,
A.; Guo, Y.; Swart, M.; Bominaar, E. L.; Green, M. T.; Hendrich, M.
P.; Lacy, D. C.; Borovik, A. S. J. Am. Chem. Soc. 2016, 138, 13143.
(3) (a) Yosca, T. H.; Langston, M. C.; Krest, C. M.; Onderko, E. L.;
Grove, T. L.; Livada, J.; Green, M. T. J. Am. Chem. Soc. 2016, 138,
16016. (b) Yosca, T. H.; Rittle, J.; Krest, C. M.; Onderko, E. L.;
Silakov, A.; Calixto, J. C.; Behan, R. K.; Green, M. T. Science 2013,
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX