C O M M U N I C A T I O N S
In conclusion, we have achieved the synthesis of heterobimetallic
porphyrin pincer complexes. Highly distorted structures of them
have been revealed by X-ray analyses. These complexes exhibit
markedly different catalytic activity in the typical Heck reaction
depending on the central metals. Highly tunable nature of porphyrins
by central metals and peripheral substituents should allow further
creation of effective complexes for various transition-metal-
catalyzed reactions.
Acknowledgment. This paper is dedicated to the memory of
Professor Yoshihiko Ito. This work was supported by a Grant-in-
Aid for Scientific Research (No. 18685013) from MEXT. H.S.
acknowledges Asahi Glass Foundation and Mitsubishi Chemical
Corporation Fund for financial support.
Figure 2. UV/vis absorption spectra of 2Ni, 2H, 3NiPd, and 3HPd in
CH2Cl2.
Supporting Information Available: General procedures, spectral
data for compounds, crystal structures, and CIF files for 2Zn, 3NiPd,
3CuPd, and 3HPd. This material is available free of charge via the
References
(1) (a) Smith, K. M.; Langry, K. C.; Minnetian, O. M. J. Org. Chem. 1984,
49, 4602-4609. (b) Arnold, D. P.; Sakata, Y.; Sugiura, K.; Worthington,
E. I. Chem. Commun. 1998, 2331-2332. (c) Hartnell, R. D.; Arnold, D.
P. Organometallics 2004, 23, 391-399. (d) Hartnell, R. D.; Arnold, D.
P. Eur. J. Inorg. Chem. 2004, 1262-1269. (e) Hodgson, M. J.; Healy, P.
C.; Williams, M. L.; Arnold, D. P. J. Chem. Soc., Dalton Trans. 2002,
4497-4504. (f) Arnold, D. P.; Healy, P. C.; Hodgson, M. J.; Williams,
M. L. J. Organomet. Chem. 2000, 607, 41-50.
(2) (a) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750-
3781. (b) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. ReV. 2005, 105,
2527-2571. (c) van der Boom, M. E.; Milstein, D. Chem. ReV. 2003,
103, 1759. (d) Singleton, J. T. Tetrahedron 2003, 59, 1837-1857.
(3) (a) Kocher, S.; Lutz, M.; Spek, A. L.; Prasad, R.; van Klink, G. P. M.;
van Koten, G.; Lang, H. Inorg. Chim. Acta 2006, 359, 4454-4462. (b)
Kocher, S.; van Klink, G. P. M.; van Koten, G.; Lang, H. J. Organomet.
Chem. 2003, 684, 230-234. (c) Rodriguez, G.; Albrecht, M.; Schoen-
maker, J.; Ford, A.; Lutz, M.; Spek, A. L.; van Koten, G. J. Am. Chem.
Soc. 2002, 124, 5127-5138.
Figure 3. Reaction profile of the Heck reaction with 3MPd.
(4) (a) Huck, W. T. S.; Rohrer, A.; Anikumar, A. T.; Fokkens, R. H.;
Nibbering, N. M. M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. New J.
Chem. 1998, 165-168. (b) Dixon, I. M.; Collin, J. P. J. Porphyrins
Phthalocyanines 2001, 5, 600-607. (c) Suijkerbuijk, B. M. J. M.; Lutz,
M.; Spek, A. L.; van Koten, G.; Klein Gebbink, R. J. M. Org. Lett. 2004,
6, 3023-3026.
porphyrin core. The outer metalation also induced lowering of
dihedral angles (ca. 46-57°) between the aromatic substituents and
the core. These structural analyses revealed that the environment
of the palladium center in these complexes is almost identical, while
the distortion of the porphyrin cores varies depending on the central
metals.
Figure 2 shows UV/vis absorption spectra of 3 along with 2,
which exhibit substantial red shift (for the Soret band, ∆λ ) 41
nm from 2Ni to 3NiPd and ∆λ ) 42 nm from 2H to 3HPd) due
to deformation of the porphyrin skeleton as well as expansion of
conjugation by the coplanarized pyridyl groups.7 Soret bands of
porphyrin pincer complex 3 are broadened (3NiPd) or split (3HPd).
Absorption spectra of 3ZnPd and 3CuPd are quite similar as those
of 3HPd and 3NiPd, respectively (Supporting Information). No
emission was observed for 3HPd and 3ZnPd upon excitation at
their Soret bands.
The attractive feature of porphyrins is that their structural and
electronic properties are susceptible to the central metal. With
several porphyrin pincer palladium complexes in hand, we carried
out preliminary experiments to elucidate metal dependence of the
catalytic activity in the typical Heck reaction.8 All of the pincer
complexes exhibited catalytic activity, but comparative experiments
revealed notable differences in the initial reaction profile (Figure
3). Although the mechanism of the present Heck system is unclear,
it is clear that the inner metal significantly influences the property
of the active site of the catalyst.
(5) Hata, H.; Shinokubo, H.; Osuka, A. J. Am. Chem. Soc. 2005, 127, 8264-
8265.
(6) Crystal data for 3NiPd:
C72H77ClN6NiPd‚CCl4‚1.84CH3CN, Mw )
1917.58, monoclinic, space group P21/c (No. 14), a ) 13.689(3) Å, b )
19.250(3) Å, c ) 33.159(6) Å, â ) 91.498(4)°, V ) 8740(3) Å3, Z ) 4,
Dcalcd ) 1.457 g/cm3, T ) 90 K, 43 280 measured reflections, 15 262
unique reflections, R ) 0.0998 (I > 2.0σ(I)), Rw ) 0.2816 (all data),
GOF ) 1.151 (I > 2.0σ(I)). 3CuPd: C72H77ClCuN6Pd‚C2H4Cl2‚water,
Mw ) 1346.74, orthorhombic, space group Pbca (No. 61), a ) 19.161(3)
Å, b ) 13.9554(18) Å, c ) 49.017(6) Å, V ) 13107(3) Å3, Z ) 8, Dcalcd
) 1.365 g/cm3, T ) 90 K, 65 466 measured reflections, 11 547 unique
reflections, R ) 0.0883 (I > 2.0σ(I)), Rw ) 0.2080 (all data), GOF )
1.052 (I > 2.0σ(I)). 3HPd:
C72H79ClN6Pd‚C2H4Cl2‚CH3CN, Mw )
1310.27, orthorhombic, space group Pcab (No. 61), a ) 14.106(5) Å, b
) 19.030(5) Å, c ) 48.863(5) Å, V ) 13117(6) Å3, Z ) 8, Dcalcd
)
1.327 g/cm3, T ) 90 K, 65 200 measured reflections, 11 560 unique
reflections, R ) 0.0779 (I > 2.0σ(I)), Rw ) 0.2175 (all data), GOF )
1.043 (I > 2.0σ(I)).
(7) (a) DiMagno, S. G.; Wertsching, A. K.; Ross, C. R., II. J. Am. Chem.
Soc. 1995, 117, 8279-8280. (b) Haddad, R. E.; Gazeau, S.; Pecaut, J.;
Marchon, J. C.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2003,
125, 1253-1268. (c) Parusel, A. B. J.; Wondimagegn, T.; Ghosh, A. J.
Am. Chem. Soc. 2000, 122, 6371-6374.
(8) For the use of NCN type pincer catalysts for Heck reaction, see: (a)
Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc. 2005, 127,
12273-12281. (b) Jung, I. G.; Son, S. U.; Park, K. H.; Chung, K. C.;
Lee, J. W.; Chung, Y. K. Organometallics 2003, 22, 4715-4720. (c) Soro,
B.; Stoccoro, S.; Minghetti, G.; Zucca, A.; Cinellu, M. A.; Gladiali, S.;
Manassero, M.; Sansoni, M. Organometallics 2005, 24, 53-61. (d)
Dijkstra, H. P.; Slagt, M. Q.; McDonald, A.; Kruithof, C. A.; Kreiter, R.;
Mills, A. M.; Lutz, M.; Spek, A. L.; Klopper, W.; van Klink, G. P. M.;
van Koten, G. Eur. J. Inorg. Chem. 2003, 830-838.
JA072218S
9
J. AM. CHEM. SOC. VOL. 129, NO. 20, 2007 6393