Page 3 of 5
Journal of the American Chemical Society
Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215–PR283. (c) Abbiati,
Scheme 3. Proposed Catalytic Cycle
G.; Marinelli, F.; Rossi, E.; Arcadi, A. Isr. J. Chem. 2013, 53, 856–868.
(d) Barbour, P. M.; Marholz, L. J.; Chang, L.; Xu, W.; Wang, X. Chem.
Lett. 2014, 43, 572–578. (e) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.;
Gooßen, L. J. Chem. Rev. 2015, 115, 2596–2697.
1
2
3
4
5
6
7
8
9
(3) For selected recent examples, see: (a) Herrero, M. T.; Sarralde, J.
D.; SanMartin, R.; Bravo, L.; Domínguez, E. Adv. Synth. Catal. 2012, 354,
3054–3064. (b) Perea-Buceta, J. E.; Wirtanen, T.; Laukkanen, O.-V.;
Mäkelä, M. K.; Nieger, M.; Melchionna, M.; Huittinen, N.; Lopez-
Sanchez, J. A.; Helaja, J. Angew. Chem., Int. Ed. 2013, 52, 11835–11839.
(c) Kumaran, E.; Leong, W. K. Tetrahedron Lett. 2014, 55, 5495–5498.
(d) Gao, J.; Shao, Y.; Zhu, J.; Zhu, J.; Mao, H.; Wang, X.; Lv, X. J. Org.
Chem. 2014, 79, 9000–9008. (e) Rubio-Marqués, P.; Rivero-Crespo, M.
A.; Leyva-Pérez, A.; Corma, A.; J. Am. Chem. Soc. 2015, 137, 11832–
11837. (f) Allegretti, P. A.; Huynh, K.; Ozumerzifon, T. J.; Ferreira, E. M.
Org. Lett. 2016, 18, 64–67. (g) Qu, C. H.; Zhang, S.; Du, H.; Zhu, C.
Chem. Commun. 2016, 52, 14400–14403. (h) Minami, H.; Kanayama, T.;
Tanaka, R.; Okamoto, N.; Sueda, T.; Yanada, R. Eur. J. Org. Chem. 2016,
2016, 5990-6000. (i) Ilies, L.; Isomura, M.; Yamauchi, S.-i.; Nakamura,
T.; Nakamura, E., J. Am. Chem. Soc. 2017, 139, 23-26.
(4) (a) McDonald, F. E.; Olson, T. C. Tetrahedron Lett. 1997, 38,
7691–7692. (b) Trost, B. M.; McClory, A. Angew. Chem. Int. Ed. 2007,
46, 2074–2077. (c) Nair, R. N.; Lee, P. J.; Rheingold, A. L.; Grotjahn, D.
B. Chem. Eur. J. 2010, 16, 7992–7995. (d) Chiang, P.-Y.; Lin, Y.-C.;
Wang, Y.; Liu, Y.-H. Organometallics 2010, 29, 5776–5782. (e) Varela-
Fernández, A.; Varela, J. A.; Saá, C. Adv. Synth. Catal. 2011, 353, 1933–
1937. (f) Varela-Fernández, A.; Varela, J. A.; Saá, C. Synthesis 2012, 44,
3285–3295. (g) Kumaran, E.; Fan, W. Y.; Leong, W. K. Org. Lett. 2014,
16, 1342–1345.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures and characterization data (PDF)
Crystallographic data for 3g, 3k, 3p, and 3s (CIF)
(5) Kanno, H.; Nakamura, K.; Noguchi, K.; Shibata, Y.; Tanaka, K.
Org. Lett. 2016, 18, 1654–1657.
(6) Pawlenko, S. Ogranosilicon Chemistry; Walter De Gruyter Inc.:
Berlin, 1986; pp 7-12.
AUTHOR INFORMATION
Corresponding Authors
Notes
The authors declare no competing financial interest.
ORCID
Yuichiro Mutoh: 0000-0002-5254-9383
Shinichi Saito: 0000-0001-8520-1116
(7) For reviews on the migration of hydrogen atom leading to the
monosubstituted vinylidenes in catalytic processes, see: (a) Metal Vinyli-
denes and Allenylidenes in Catalysis: From Reactivity to Applications in
Synthesis; Bruneau, C., Dixneuf, P. H., Eds.; Wiley-VCH: Weinheim,
Germany, 2008. (b) Nishibayashi, Y. Cycloaromatization via Transition
Metal-Cumulenylidenes. In Transition-Metal-Mediated Aromatic Ring
Construction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp.
549–569. (c) Katayama, H.; Ozawa, F. Coord. Chem. Rev. 2004, 248,
1703–1715. (d) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004,
104, 3079–3159. (e) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew.
Chem., Int. Ed. 2005, 44, 6630–6666. (f) Bruneau, C.; Dixneuf, P. H.
Angew. Chem., Int. Ed. 2006, 45, 2176–2203. (g) Varela, J. A.; Saá, C.
Chem. Eur. J. 2006, 12, 6450–6456. (h) Trost, B. M.; McClory, A. Chem.
Asian J. 2008, 3, 164–194. (i) Varela, J. A.; González-Rodoríguez, C.; Saá,
C. Top. Organomet. Chem. 2014, 48, 237–287.
(8) For selected examples of 1,2-silicon migration in a transition-metal
complex, see: (a) Sakurai, H.; Hirama, K.; Nakadaira, Y.; Kabuto, C. J.
Am. Chem. Soc. 1987, 109, 6880–6881. (b) Schneider, D.; Werner, H.
Angew Chem., Int. Ed. Engl. 1991, 30, 700–702. (c) Connelly, N. G.;
Geiger, W. E.; Lagunas, M. C.; Metz, B.; Rieger, A. L.; Rieger, P. H.;
Shaw, M. J. J. Am. Chem. Soc. 1995, 117, 12202–12208. (d) Katayama,
H.; Onitsuka, K.; Ozawa, F. Organometallics 1996, 15, 4642–4645. (e)
Werner, H.; Lass, R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16,
4077–4088. (f) Katayama, H.; Ozawa, F. Organometallics 1998, 17,
5190–5196. (g) Huang, D.; Streib, W. E.; Eisenstein, O.; Caulton, K. G.
Organometallics 2000, 19, 1967–1972. (h) Murakami, M.; Hori, S. J. Am.
Chem. Soc. 2003, 125, 4720–4721. (i) Miura, T.; Murata, H.; Kiyota, K.;
Kusama, H.; Iwasawa, N. J. Mol. Catal. A: Chem. 2004, 213, 59–71. (j)
Kim, H.; Lee, C. J. Am. Chem. Soc. 2005, 127, 10180–10181. (k) Jiménez,
M. V.; Sola, E.; Lahoz, F. J.; Oro, L. A. Organometallics 2005, 24, 2722–
2729. (l) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592–
4593. (m) Ilg, K.; Paneque, M.; Poveda, M. L.; Rendón, N.; Santos, L. L.;
Carmona, E.; Mereiter, K. Organometallics 2006, 25, 2230–2236. (n)
Konkol, M.; Steinborn, D. J. Organomet. Chem. 2006. 691, 2839–2845.
(o) Shiba, T.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2013, 135,
13636–13639. (p) Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013,
135, 18742–18745. (q) Yeung, C.-F.; Chung, L.-H.; Lo, H.-S.; Chiu, C.-
H.; Cai, J.; Wong, C.-Y. Organometallics 2015, 34, 1963–1968.
ACKNOWLEDGMENT
This research was supported in part by MEXT KAKENHI Grant
Numbers JP23105543, JP25105747 (Y. M.) and by Taisho Phar-
maceutical Co., Ltd. Award in Synthetic Organic Chemistry, Ja-
pan (Y. M.).
REFERENCES
(1) For selected reviews on the indole ring synthesis, see: (a) Indole
Ring Synthesis: From Natural Products to Drug Discovery; Gribble, G.
W., Ed.; John Wiley & Sons: Chichester, West Sussex, 2016. (b) Kochan-
owska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489–
4497. (c) Synthesis of Heterocycles via Metal-Catalyzed Reactions that
Generate One or More Carbon-Heteroatom Bonds; Wolfe, J. P., Ed.;
Topics in Heterocyclic Chemistry; Springer Berlin Heidelberg: Berlin,
Heidelberg, 2013; Vol. 32. (d) Amination and Formation of sp2 C-N
Bonds; Taillefer, M.; Ma, D., Eds.; Topics in Organometallic Chemistry;
Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; Vol. 46. (e) Ball, C.
J.; Willis, M. C. Synthesis of Aromatic Benzo-Fused Five- and Six-
Membered Heterocycles via Palladium- and Copper-Catalyzed C-X Bond-
Forming Reactions. In Transition-Metal-Mediated Aromatic Ring Con-
struction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 645–
682. (f) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195–7210.
(g) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469–6480. (h) Liu, T.; Fu,
H. Synthesis 2012, 44, 2805–2824. (i) Platon, M.; Amardeil, R.; Dja-
kovitch, L.; Hierso, J.-C. Chem. Soc. Rev. 2012, 41, 3929–3968. (j) Shiri,
M. Chem. Rev. 2012, 112, 3508–3549. (k) Inman, M.; Moody, C. J. Chem.
Sci. 2013, 4, 29–41.
(9) For the rearrangement of other heteroatom substituted alkynes to
the corresponding metal vinylidenes in catalysis, see: [Ge] see, ref 5 and:
(a) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050–
12051. [Sn] (b) Shirakawa, E.; Morita, R.; Tsuchimoto, T.; Kawakami, Y.
(2) For recent reviews, see: (a) Nakamura, I. Skeletal Rearrangement
Reactions. In Transition-Metal-Mediated Aromatic Ring Construction;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 743–771. (b)
ACS Paragon Plus Environment