186 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 2
Letters
crystallographic screening12 is an appropriate technique for the
discovery of novel, low basicity fragment hits against uPA that
can be successfully developed into more advanced lead-like
compounds (such as 15) with highly desirable physicochemical
properties, including high oral bioavailability.
at high resolution and reveals a novel structural subsite. J. Biol. Chem.
2000, 10, 7239–7248.
(10) Schweinhorst, A. Direct thrombin inhibitors-a survey of recent
developments. Cell. Mol. Life Sci. 2006, 63, 2773–2791.
(11) Abbenante, G.; Fairlie, D. P. Protease inhibitors in the clinic. Med.
Chem. 2005, 1, 71–104.
(12) Hartshorn, M. J.; Murray, C. W.; Cleasby, A.; Frederickson, M.; Tickle,
I. J.; Jhoti, H. Fragment-based lead discovery using X-ray crystal-
lography. J. Med. Chem. 2005, 48, 403–413.
(13) Nienaber, V. L.; Richardson, P. L.; Klighofer, V.; Bouska, J.; Giranda,
V. L.; Greer, J. Discovering novel ligands for macromolecules using
X-ray crystallographic screening. Nat. Biotechnol. 2000, 18, 1105–
1108.
(14) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand efficiency: A useful
metric for lead selection. Drug DiscoVery Today 2004, 9, 430–431.
(15) Hajduk, P. J.; Boyd, S.; Nettesheim, D.; Nienaber, V.; Severin, J.;
Smith, R.; Davidson, D.; Rockway, T.; Fesik, S. W. Identification of
novel inhibitors of urokinase via NMR-based screening. J. Med. Chem.
2000, 43, 3862–3866.
(16) Wendt, M. D.; Rockway, T. W.; Geyer, A.; McClellan, W.; Weitzberg,
M.; Zhao, X.; Mantei, R.; Nienaber, V. L.; Stewart, K.; Klinghofer,
V.; Giranda, V. Identification of novel binding interactions in the
development of potent inhibitors of urokinase. Synthesis, structural
analysis, and SAR of N-phenyl amide 6-substitution. J. Med. Chem.
2004, 47, 303–324.
Acknowledgment. The authors thank Joe Coyle for as-
sistance with protein production, Jacqueline A. Higgins, E. Jon
Lewis, and Douglas Ross for DMPK support and Robin A. E.
Carr, David M. Cross, Christopher W. Murray, and Glyn
Williams for useful discussions. pKa values were determined
by Pharmorphix Ltd, 250 Cambridge Science Park, Milton Road,
Cambridge, CB4 0WE, U.K.
Supporting Information Available: Experimental procedures
for the synthesis of compounds 6-16, in vitro assay protocols for
determination of IC50 values against uPA, and X-ray crystal-
lographic details for uPA cocomplexed with (R)-5, 6, 9, 11, 14,
and 15. This material is available free of charge via the Internet at
(17) Stürzebecher, J.; Vieweg, H.; Steinmetzer, T.; Schweinitz, A.; Stubbs,
M. T.; Renatus, M.; Wikström, P. 3-Amidinophenylalanine-based
inhibitors of urokinase. Bioorg. Med. Chem. Lett. 1999, 9, 3147–3152.
(18) Barber, C. G.; Dickinson, R. P.; Fish, P. V. Selective urokinase-type
plasminogen activator (uPA) inhibitors. Part 3: 1-Isoquinolinylguanidines.
Bioorg. Med. Chem. Lett. 2004, 14, 3227–3230.
(19) Fish, P. V.; Barber, C. G.; Brown, D. G.; Butt, R.; Collis, M. G.;
Dickinson, R. P.; Henry, B. T.; Horne, V. A.; Huggins, J. P.; King,
E.; O’Gara, M.; McCleverty, D.; McIntosh, F.; Phillips, C.; Webster,
R. Selective urokinase-type plasminogen activator inhibitors. 4. 1-(7-
Sulfonamidoisoquinolinyl)guanidines. J. Med. Chem. 2007, 50, 2341–
2351.
(20) Hajduk, P. Fragment-based drug design: How big is too big? J. Med.
Chem. 2006, 49, 6972–6976.
(21) Mackman, R. L.; Katz, B. A.; Breitenbucher, J. G.; Hui, H. C.; Verner,
E.; Luong, C.; Liu, L.; Sprengeler, P. A. Exploiting subsite S1 of
trypsin-like serine proteases for selectivity: Potent and selective
inhibitors of urokinase-type plasminogen activator. J. Med. Chem.
2001, 44, 3856–3871.
References
(1) Duffy, M. J. The urokinase plasminogen activator system: Role in
malignancy. Curr. Pharm. Des. 2004, 10, 39–49.
(2) Ilies, M. A.; Scozzafava, A.; Supuran, C. T. Therapeutic applications
of serine protease inhibitors. Expert Opin. Ther. Pat. 2002, 12, 1181–
1214.
(3) Ge, Y.; Elghetany, T. Urokinase plasminogen activator receptor
(CD87): Something old, something new. Lab. Hematol. 2003, 9, 67–
71.
(4) Wong, A. P.; Cortez, S. L.; Baricos, W. H. Role of plasmin and
gelatinase in extracellular matrix degradation by cultured rat mesangial
cells. Am. J. Physiol. Renal Physiol. 1992, 263, 1112–1118.
(5) Jean-Claude, J.; Newman, K. M.; Li, H.; Gregory, A. K.; Tilson, M. D.
Possible key role for plasmin in the pathogenesis of abdominal aortic
aneurysms. Surgery 1994, 116, 472–478.
(6) Gveric, D.; Hanemaaijer, R.; Newcombe, J.; van Lent, N. A.; Sier,
C. F. M.; Cuzner, M. L. Plasminogen activators in multiple sclerosis
legions. Brain 2001, 124, 1978–1988.
(7) Schweinitz, A.; Steinmetzer, T.; Banke, I. J.; Arlt, M. J. E.;
Stürzebecher, A.; Schuster, O.; Geissler, A.; Giersiefen, H.; Zeslawska,
E.; Jacob, U.; Krüger, A.; Stürzebecher, J. Design of novel and
selective inhibitors of urokinase-type plasminogen activator with
improved pharmacokinetic properties for use as antimetastatic agents.
J. Biol. Chem. 2004, 279, 33613–33622.
(8) Almholt, K.; Lund, L. R.; Rygaard, J.; Nielsen, B. S.; Danø, K.; Rømer,
J.; Johnsen, M. Reduced metastasis of transgenic mammary cancer in
urokinase-deficient mice. Int. J. Cancer 2005, 113, 522–532.
(9) Nienaber, V. L.; Wang, J.; Davidson, D.; Henkin, J. Re-engineering
of human urokinase provides a system for structure-based drug design
(22) Monk, J. P.; Brogden, R. N. Mexiletine. A review of its pharmaco-
dynamic and pharmacokinetic properties, and therapeutic use in the
treatment of arrhythmias. Drugs 1990, 40, 374–411.
(23) Bruncko, M.; McClellan, W. J.; Wendt, M. D.; Sauer, D. R.; Geyer,
A.; Dalton, C. R.; Kaminski, M. A.; Weitzberg, M.; Gong, J.; Dellaria,
J. F.; Mantei, R.; Zhao, X.; Neinaber, V. L.; Stewart, K.; Klinghofer,
V.; Bouska, J.; Rockway, T. W.; Giranda, V. L. Naphthamidine
urokinase plasminogen activator inhibitors with improved pharmaco-
kinetic properties. Bioorg. Med. Chem. Lett. 2005, 15, 93–98.
(24) Wermuth, C. G. Selective optimization of side activites: Another way
for drug discovery. J. Med. Chem. 2004, 47, 1303–1314.
JM701359Z