Weinreb amides were prepared in good to excellent yields
and high de values by addition of the potassium enolate of
N-methoxy-N-methylacetamide to sulfinimines (N-sulfinyl
imines) or reaction of lithium N,O-dimethylhydroxylamine
with N-sulfinyl â-amino esters.13
Scheme 2
Methods for the asymmetric synthesis of R-substituted
â-amino ketones that are required for the synthesis of
architecturally complex piperidine alkaloids via the Mannich
cyclization protocol are limited. Several racemic syntheses
of R-substituted â-amino ketones14 and a number of asym-
metric syntheses of R-substituted â-amino esters have been
reported.15 To the best of our knowledge, the only asym-
metric synthesis of an R-substituted â-amino ketone is our
highly diastereoselective addition of the E-lithium enolate
of 4-heptanone 2 to sulfinimine (S)-(+)-1.10b A 12:1 separable
mixture of â-amino ketones syn-3 and anit-4 was obtained
(Scheme 1). A limitation of this procedure is that the ketone
the addition of prochiral enolate and carbanion species to
sulfinimines18 exist where the formation of four diastereo-
isomers is possible.19 The chemistry of prochiral Weinreb
amide enolates has not been described.20,21
The prochiral Weinreb amide enolate of N-methoxy-N-
methylpropylamide (8) was generated at -78 °C by addition
of 1 equiv of the appropriate base at -78 °C (Scheme 2).
After 2 h 0.5 equiv of sulfinimine (S)-4 (Z ) 4-MePh) was
added to the preformed enolate and TLC monitored the
progress for completion (typically 30 min). Products were
isolated by chromatography and are recorded in Table 1.
These results reveal that good levels of stereoinduction were
observed for formation of the syn-R-methyl â-amino Weinreb
amides, syn-9 and syn-10, regardless of the base (Table 1,
entries 1-4 and 6). Optimum results were noted for LiHMDS
in THF (Table 1, entries 1 and 6). However, all four
diastereoisomers were detected and they were not separable
by conventional chromatography. This phenomenon has
occasionally been observed for the addition of carbanion
species to sulfinimines and can usually be overcome by
changing the N-sulfinyl group.22 Diverse N-sulfinyl imines
Scheme 1
needs to be symmetrical. A more general way of preparing
R-substituted â-amino ketones would be the reaction of
organometallic reagents with a sulfinimine-derived R-sub-
stituted â-amino Weinreb amide. We describe here a study
of the asymmetric synthesis of R-substituted â-amino Wein-
reb amides and their conversion into R-substituted â-amino
acids, aldehydes, and unsymmetrical R-substituted â-amino
ketones.
(17) For reviews on Weinreb amides see: (a) Sibi, M. P. Org. Prep.
Proced. Int. 1993, 25, 15. (b) Khlestkin, V. K.; Mazhukin, D. G. Current
Org. Chem. 2003, 7, 967.
(18) For recent reviews on the chemistry of sulfinimines see: (a) Morton,
D.; Stockman, R. A. Tetrahedron 2006, 62, 8869. (b) Senanayake, C. H.;
Krishnamurthy, D.; Lu, Z.-H.; Han, Z.; Gallou, I. Aldrichim. Acta 2005,
38, 93. (c) Reference 9. (d) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc.
Chem. Res. 2002, 35, 984.
(19) (a) Garcia Ruano, J. L.; Fernandez, I.; Del Prado Catalina, M.;
Hermoso, J. A.; Sanz-Aparicio, J.; Martinez-Ripoll, M. J. Org. Chem. 1998,
63, 7157. (b) Garcia Ruano, J. L.; Alcudia, A.; Del Prado, M.; Barros, D.;
Maestro, M. C.; Fernandez, I. J. Org. Chem. 2000, 65, 2856. (c) Tang, T.
P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819. (d) Garcia Ruano, J. L.;
Aleman, J.; Del Prado, M.; Fernandez, I. J. Org. Chem. 2004, 69, 4454.
(e) Davis, F. A.; Deng, J. Org. Lett. 2004, 6, 2789. (f) Davis, F. A.; Deng,
J. Org. Lett. 2005, 7, 621. (g) Reference 10b. (h) Wang, Y.; He, Q.-F.;
Wang, H.-W.; Zhou, X,; Huang, Z.-Y.; Qin, Y. J. Org. Chem. 2006, 71,
1588. (i) Davis, F. A.; Zhang, Y.; Qui, H. Org. Lett. 2007, 9, 833.
(20) The aldol reaction with R-isocyano Weinreb amide has been
reported. Sawamura, M.; Nakayama, Y.; Kato, T.; Ito, Y. J. Org. Chem.
1995, 60, 1727.
(21) For reports of aldol reactions with isoxazolidines chiral auxiliaries
see: (a) Abiko, A.; Liu, J. F.; Wang, G. Q.; Masamune, S. Tetrahedron
Lett. 1997, 38, 3261. (b) Farr, R. N. Tetrahedron Lett. 1998, 39, 195. (c)
Sharma, G. V. M.; Reddy, I. S.; Reddy, V. G.; Rao, A. V. R. Tetrahedron:
Asymmetry 1999, 10, 229.
(22) (a) Davis, F. A.; Lee, S.; Zhang, H.; Fanelli, D. L. J. Org. Chem.
2000, 65, 8704. (b) Davis, F. A.; Mohanty, P. K. J. Org. Chem. 2002, 67,
1290. (c) Davis, F. A.; Wu, Y.; Yan, H.; McCoull, W.; Prasad, K. R. J.
Org. Chem. 2003, 68, 2410. (d) Davis, F. A.; Melamed, J. Y.; Sharik, S. S.
J. Org. Chem. 2006, 71, 8761.
Conceptually the most direct way for preparing R-substi-
tuted â-amino Weinreb amides is the addition of a prochiral
Weinreb amide enolate to a sulfinimine (Scheme 2). Weinreb
amides, introduced by Nahm and Weinreb in 1981,16 are
valuable carbonyl equivalents and are widely used for the
synthesis of carbonyl compounds.17 Only a few studies on
(14) (a) Loh, T.-P.; Wei, L.-L Tetrahedron Lett. 1998, 39, 323. (b) Zarghi,
A.; Naimi-Jamal, M. R.; Webb, S. A.; Balalaie, S.; Saidi, M. R.; Ipaktschi,
J. Eur. J. Org. Chem. 1998, 197. (c) Kobayashi, S.; Busujima, T.; Nagayama,
S. Synlett 1999, 545. (d) Loh, T.-P.; Liung, S. B. K. W.; Tan, K.-L.; Wei,
L.-L. Tetrahedron 2000, 56, 3227. (e) Miura, K.; Tamaki, K.; Nakagawa,
T.; Hosomi, A. Angew. Chem., Int. Ed. 2000, 39, 1958. (f) Schunk, S.;
Enders, D. Org. Lett. 2001, 3, 3177. (g) Wabnitz, T. C.; Spencer, J. B.
Tetrahedron Lett. 2002, 43, 3891. (h) Ma, Z.; Zhao, Y.; Jiang, N.; Jin, X.;
Wang, J. Tetrahedron Lett. 2002, 43, 3209.
(15) For reviews see: (a) Co´rdova, A. Acc. Chem. Res. 2004, 37, 102.
(b) Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005,
16, 2833. (c) Reference 3a.
(16) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
2414
Org. Lett., Vol. 9, No. 12, 2007