3. (a) X. Liu, B. L. Stocker and P. H. Seeberger, J. Am. Chem. Soc.,
2006, 128, 3638; (b) A. Holemann, B. L. Stocker and
P. H. Seeberger, J. Org. Chem., 2006, 71, 8071.
4. Synthesis of a(1-6) tetra-mannoside using ionic liquid-supported
glycosylation was recently reported: A. K. Pathak, C. K. Yerneni,
Z. Young and V. Pathak, Org. Lett., 2008, 10, 145.
5. (a) R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Bio-
chem., 1994, 50, 21; (b) J. D. C. Codee and P. H. Seeberger, ACS
Symp. Ser., 2007, 960, 150.
Scheme 4 Automated assembly of a-(1,6) hexa-mannoside 7.
6. A. Ravida, X. Liu, L. Kovacs and P. H. Seeberger, Org. Lett.,
2006, 8, 1815.
7. We are aware that the TIPS group is not the only protecting group
that could be chosen for this purpose. However, the steric bulk
and base-stable nature of TIPS make it the ideal choice in this
case.
Fig. 2 HPLC trace of crude hexasaccharide 7.
8. F. R. Carrel and P. H. Seeberger, J. Carbohydr. Chem., 2007, 26,
125.
In summary, the pursuit of an automated synthesis of LM
backbone a(1-6) hexa-mannoside led us to identify glycosyl
tricyclic orthoesters as unique synthetic intermediates for the
preparation of functional carbohydrate building blocks. The
simple acid-catalyzed trans-orthoesterification of glycosyl 1,2-
orthoesters allows the direct formation of glycosyl tricyclic
orthoesters. These orthoesters can be efficiently converted to
glycosyl dibutyl phosphates, as exemplified by mannose,
xylose and glucose.
9. (a) A. F. Bochkov, I. V. Obruchnikov and N. K. Kochetkov, Izv.
Akad. Nauk. SSSR, Ser. Khim., 1971, 1291; (b) A. F. Bochkov,
V. I. Snyatkova, Y. V. Voznyi and N. K. Kochetkov, Zh. Obshch.
Khim., 1971, 41, 2776; (c) A. F. Bochkov, Y. V. Voznyi,
V. N. Chernetskii, V. M. Dashunin and A. V. Rodionov, Izv.
Akad. Nauk. SSSR, Ser. Khim., 1975, 420.
10. Prandi et al. have reported the CSA-catalyzed trans-orthoester-
ification of 1,2-orthoarabinose to the tricyclic 1,2,5-orthoester.
These tricyclic orthoesters were reacted with thiols to give thio-
glycosides, which were used in the syntheses of oligoarabinofur-
anosides. See: (a) S. Sanchez, T. Bamhaoud and J. Prandi,
Tetrahedron Lett., 2000, 41, 7447; (b) T. Bamhaoud, S. Sanchez
and J. Prandi, Chem. Commun., 2000, 659. Glycosyl phosphates
are currently easier to use for automated synthesis than thioglyco-
sides because glycosyl phosphates can be activated under homo-
geneous reaction conditions with a single activator, such as
TMSOTf.
This research was supported by ETH Zurich, the Swiss
¨
National Science Foundation (SNF Grant 200121-101593), the
Japan Society for the Promotion of Science (JSPS postdoctoral
fellowship for research abroad, for R. W.) and the Roche
Research Foundation (postdoctoral fellowship, for S. B.). We
thank P. Seiler for the X-ray analysis of 5a. We thank CEM
Corp. for providing microwave reactors in our laboratory.
11. (a) S. Hiranuma, O. Kanie and C.-H. Wong, Tetrahedron Lett.,
1999, 40, 6423; (b) M. Hori and F. Nakatsubo, Macromolecules,
2000, 33, 1148.
12. The acid-induced trans-orthoesterification of glycosyl 1,2-ortho-
esters has been described in the literature; see refs. 9, 10 and 11a.
However, we were unable to reproduce the results of Bochkov
et al. (see ref. 9c), reporting that para-toluenesulfonic acid can
induce the trans-orthoesterification of 2g to the corresponding
tricyclic orthoester in 48% yield (our result: 26%). Hiranuma et al.
(ref. 11a) reported the formation of a mannosyl tricyclic orthoester
using pyridine as the solvent and pyridium trifluoromethanesul-
fonate as the acid catalyst. However, these conditions are less
practical for scale-up.
Notes and references
1. (a) P. J. Brennan, Annu. Rev. Biochem., 1995, 64, 29;
(b) D. Chatterjee and K. H. Khoo, Glycobiology, 1998, 8, 113.
2. For selected examples: (a) J. D. Ayers, T. L. Lowary,
C. B. Morehouse and G. S. Besra, Bioorg. Med. Chem. Lett.,
1998, 8, 437; (b) F. W. D’Souza, J. D. Ayers, P. R. McCarren and
T. L. Lowary, J. Am. Chem. Soc., 2000, 122, 1251;
(c) A. Stadelmaier, M. B. Biskup and R. R. Schmidt, Eur. J.
Org. Chem., 2004, 3292; (d) K. N. Jayaprakash, J. Lu and
B. Fraser-Reid, Bioorg. Med. Chem. Lett., 2004, 14, 3815;
(e) J. A. Watt and S. J. Williams, Org. Biomol. Chem., 2005, 3,
1982; (f) B. S. Dyer, J. D. Jones, G. D. Ainge, M. Denis,
D. S. Larsen and G. F. Painter, J. Org. Chem., 2007, 72, 3282;
(g) M. Joe, Y. Bai, R. C. Nacario and T. L. Lowary, J. Am. Chem.
Soc., 2007, 129, 9885; (h) C. Rademacher, G. K. Shoemaker,
H. S. Kim, R. B. Zheng, H. Taha, C. Liu, R. C. Nacario,
D. C. Schriemer, J. S. Klassen, T. Peters and T. L. Lowary,
J. Am. Chem. Soc., 2007, 129, 10489.
13. 1,2-Orthoesters were prepared in four steps from D-mannose,
D-glucose or D-xylose in good yield. See ESIw.
14. Tricyclic orthoesters have been used as protecting groups for
carboxylic acids, and they require fairly vigorous conditions for
cleavage. See: (a) E. J. Corey and N. Raju, Tetrahedron Lett.,
1983, 24, 5571; (b) M. A. Blaskovich and G. A. Lajoie, J. Am.
Chem. Soc., 1993, 115, 5021.
15. R. B. Andrade, O. J. Plante, L. G. Melean and P. H. Seeberger,
Org. Lett., 1999, 11, 1811.
ꢀc
This journal is The Royal Society of Chemistry 2008
3512 | Chem. Commun., 2008, 3510–3512