Mechanism of N
d
N Cleavage by an Iron(II) Hydride
A R T I C L E S
Scheme 1
Figure 2. Bulky â-diketiminate ligands used in this work.
coordinate monomer, LtBuFeH, and it binds pyridine to give
LtBuFe(H)(pyridine), which has a trigonal pyramidal geometry.
The monomeric hydride complexes have the desired high-spin
(S ) 2) electronic configuration at the metal, by virtue of the
low coordination number and weak ligand field at iron. Although
they lack the characteristic three-sulfur coordination environment
of the iron atoms in the FeMoco, diketiminate-supported iron
hydrides show promise for giving hints into the relevant
reactivity patterns of hydride ligands in a weak ligand field.13
The main function of nitrogenase is the cleavage of N-N
bonds, but in Vitro it reduces numerous substrates. For example,
A. Vinelandii iron-molybdenum nitrogenase has been reported
to reduce methyldiazene and hydrazine.14 N-N single bond
cleavage is promoted by nitrogenase and model complexes,14-16
though rarely with iron.17 In a preliminary communication, we
reported that [LtBuFeH]2 reacts with azobenzene (PhNdNPh)
to afford the amido complex LtBuFeNHPh (boxed reaction in
Scheme 1).11 This reaction was the first example of complete
NdN cleavage by an iron-hydride complex, and one of the few
by any iron complex.18-21 An unusual facet of the transformation
in Scheme 1 is that the complete NdN bond cleavage of
azobenzene requires no overall change in oxidation state at the
iron. This contrasts with literature NdN cleavage reactions that
result in four-electron oxidation of a metal (or multiple metals).22
Given the importance of breaking nitrogen-nitrogen bonds
in the formation of ammonia from N2 by nitrogenase, the ability
of a low-coordinate iron hydride to completely break an NdN
bond is remarkable. This manuscript reports investigations aimed
to determine the mechanism of this unusual transformation.
Results and Discussion
Synthesis of High-Spin Iron(II) Hydride Complexes. We
have reported the synthesis of dimeric [LtBuFeH]2, and showed
that it is in equilibrium with its monomeric, trigonal-planar form
LtBuFeH.11 In order to provide an alternative ligand with
comparable electronic properties and more steric bulk, we have
prepared the new ligand abbreviated LtBu′ (Figure 2), which
differs from LtBu by the presence of an additional isopropyl
group at the para position of each aryl ring. Creation of LtBu′
necessitated the synthesis of 2,4,6-triisopropylaniline, which
came from reduction of 2,4,6-triisopropylnitrobenzene. Incor-
poration of this aniline into the â-diketiminate ligand followed
procedures analogous to those used in the synthesis of LtBu
(see the Experimental Section for details).
H
Hydride complexes were accessed by addition of KHBEt3 to
the chloride complex LtBuFeCl or LtBu′FeCl at room temperature
in toluene. An immediate color change from red to brown was
(12) A recent paper postulates a transient four-coordinate iron-hydride complex
that reacts with benzene: Brown, S. D.; Peters, J. C. J. Am. Chem. Soc.
2004, 126, 4538-4539.
(13) Studies of other promising iron-hydride complexes: (a) Brown, S. D.; Mehn,
M. P.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 13146-13147. (b) Franke,
O.; Wiesler, B. E.; Lehnert, N.; Peters, G.; Burger, P.; Tuczek, F. Z. Anorg.
Allg. Chem. 2006, 632, 1247-1256. (c) Gilbertson, J. D.; Szymczak, N.
K.; Crossland, J. L.; Miller, W. K.; Lyon, D. K.; Foxman, B. M.; Davis,
J.; Tyler, D. R. Inorg. Chem. 2007, 46, 1205-1214.
(14) (a) Burgess, B. K.; Wherland, S.; Newton, W. E.; Stiefel, E. I. Biochemistry
1981, 20, 5140-5146. (b) Barney, B. M.; Laryukhin, M.; Igarashi, R. Y.;
Lee, H.-I.; Dos Santos, P. C.; Yang, T.-C.; Hoffman, B. M.; Dean, D. R.;
Seefeldt, L. C. Biochemistry 2005, 44, 8030-8037. (c) Barney, B. M.;
Yang, T.-C.; Igarashi, R. Y.; Dos Santos, P. C.; Laryukhin, M.; Lee, H.-I.;
Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. J. Am. Chem. Soc. 2005,
127, 14960-14961.
(15) Reduction of hydrazine by Mo/S-based nitrogenase model complexes: (a)
Block, E.; Ofori-Okai, G.; Kang, H.; Zubieta, J. J. Am. Chem. Soc. 1992,
114, 758-759. (b) DeBord, J. R. D.; George, T. A.; Chang, Y.; Chen, Q.;
Zubieta, J. Inorg. Chem. 1993, 32, 785-786. (c) Coucouvanis, D.; Mosier,
P. E.; Demadis, K. D.; Patton, S.; Malinak, S. M.; Kim, C. G.; Tyson, M.
A. J. Am. Chem. Soc. 1993, 115, 12193-12194. (d) Demadis, K. D.;
Coucouvanis, D. Inorg. Chem. 1994, 33, 4195-4197. (e) Malinak, S. M.;
Demadis, K. D.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 3126-
3133. (f) Demadis, K. D.; Malinak, S. M.; Coucouvanis, D. Inorg. Chem.
1996, 35, 4038-4046. (g) Schollhammer, P.; Petillon, F. Y.; Poder-Guillou,
S.; Saillard, J. Y.; Talarmin, J.; Muir, K. W. Chem. Commun. 1996, 2633-
2634. (h) Petillon, F. Y.; Schollhammer, P.; Talarmin, J.; Muir, K. W. Inorg.
Chem. 1999, 38, 1954-1955. (i) Le Grand, N.; Muir, K. W.; Petillon, F.
Y.; Pickett, C. J.; Schollhammer, P.; Talarmin, J. Chem. Eur. J. 2002, 8,
3115-3127.
(18) (a) Hansert, B.; Vahrenkamp, H. J. Organomet. Chem. 1993, 459, 265-
269. (b) Bazhenova, T. A.; Emelyanova, N. S.; Shestakov, A. F.; Shilov,
A. E.; Antipin, M. Y.; Lyssenko, K. A. Inorg. Chim. Acta 1998, 280, 288-
294.
(19) Ohki, Y.; Takikawa, Y.; Hatanaka, T.; Tatsumi, K. Organometallics 2006,
25, 3111-3113.
(20) In a related reaction, azides are catalytically reduced by H2 using a sterically
hindered iron catalyst: Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J.
Am. Chem. Soc. 2006, 128, 5302-5303.
(21) Some synthetic Fe/Mo clusters reduce diazenes, and the available evidence
indicates that the reaction takes place at molybdenum: Malinak, S. M.;
Simeonov, A.; Mosier, P. E.; McKenna, C. E.; Coucouvanis, D. J. Am.
Chem. Soc. 1997, 119, 1662-1667.
(22) (a) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem.
Soc., Chem. Commun. 1982, 1015. (b) Cotton, F. A.; Duraj, S.; Roth, W.
J. Am. Chem. Soc. 1984, 106, 4749. (c) Lahiri, G. K.; Goswami, S.; Falvello,
L.; Chakravorty, A. Inorg. Chem. 1987, 26, 3365. (d) Hill, J. E.; Profilet,
R. D.; Fanwick, P. E.; Rothwell, I. P. Angew. Chem., Int. Ed. Engl. 1990,
29, 664. (e) Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chem. 1991,
30, 1143. (f) Arney, D. S. J.; Burns, C. J. J. Am. Chem. Soc. 1992, 115,
10068. (g) Peters, R. G.; Warner, B. P.; Burns, C. J. J. Am. Chem. Soc.
1999, 121, 5585. (h) Arney, D. S. J.; Burns, C. J. J. Am. Chem. Soc. 1995,
117, 9448-9460. (i) Schrock, R. R.; Glassman, T. E.; Vale, M. G.; Kol,
M. J. Am. Chem. Soc. 1993, 115, 1760. (j) Zambrano, C. H.; Fanwick, P.
E.; Rothwell, I. P. Organometallics 1994, 13, 1174. (k) Lockwood, M. A.;
Fanwick, P. E.; Eisenstein, O.; Rothwell, I. P. J. Am. Chem. Soc. 1996,
118, 2762. (l) Gray, S. D.; Thorman, J. L.; Adamian, V. A.; Kadish, K.
M.; Woo, L. K. Inorg. Chem. 1998, 37, 1. (m) Warner, B. P.; Scott, B. L.;
Burns, C. J. Angew. Chem., Int. Ed. 1998, 37, 959. (n) Maseras, F.;
Lockwood, M. A.; Eisenstein, O.; Rothwell, I. P. J. Am. Chem. Soc. 1998,
120, 6598. (o) Aubart, M. A.; Bergman, R. G. Organometallics 1999, 18,
811. (p) Pe´tillon, F. Y.; Schollhammer, P.; Talarmin, J.; Muir, K. W. Inorg.
Chem. 1999, 38, 1954-1955. (q) Diaconescu, P. L.; Arnold, P. L.; Baker,
T. A.; Mindiola, D. J.; Cummins, C. C. J. Am. Chem. Soc. 2000, 122,
6108. (r) Guillemot, G.; Solari, E.; Scoppelliti, R.; Floriani, C. Organo-
metallics 2001, 20, 2446-2448. (s) Lentz, M. R.; Vilardo, J. S.; Lockwood,
M. A.; Fanwick, P. E.; Rothwell, I. P. Organometallics 2004, 23, 329-
343. (t) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Chem. Commun. 2005,
4681-4683.
(16) Hydrazine reduction by ruthenium complexes: (a) Chatterjee, D. J. Mol.
Catal. A: Chem. 2000, 154, 1-3. (b) Prakash, R.; Ramachandraiah, G. J.
Chem. Soc., Dalton Trans. 2000, 85-92. (c) Nakajima, Y.; Suzuki, H.
Organometallics 2003, 22, 959-969. (d) Nakajima, Y.; Inagaki, A.; Suzuki,
H. Organometallics 2004, 23, 4040-4046. (e) Nakajima, Y.; Suzuki, H.
Organometallics 2005, 24, 1860-1866. (f) Nakajima, Y.; Kameo, H.;
Suzuki, H. Angew. Chem., Int. Ed. 2006, 45, 950-952.
(17) Hydrazine, reduction by iron complexes: Verma, A. K.; Lee, S. C. J. Am.
Chem. Soc. 1999, 121, 10838-10839.
9
J. AM. CHEM. SOC. VOL. 129, NO. 26, 2007 8113