ORGANIC
LETTERS
2007
Vol. 9, No. 12
2425-2427
Enantioselective Total Synthesis of
)-Jasplakinolide
(+
Arun K. Ghosh* and Deuk Kyu Moon
Departments of Chemistry and Medicinal Chemistry, Purdue UniVersity,
West Lafayette, Indiana 47907
Received April 12, 2007
ABSTRACT
An enantioselective total synthesis of (
syn-aldol, ortho-ester Claisen rearrangement followed by efficient conversion to a cyanide. The
diastereoselective manner utilizing nucleophilic addition to a chiral sulfinimine. Yamaguchi macrocyclization and removal of the protecting
group provided a convenient access to ( )-jasplakinolide.
+
)-jasplakinolide is described. The synthesis of the polyketide template utilized a diastereoselective
â
-amino acid unit was constructed in a highly
+
Jasplakinolide (1), a 19-membered cyclic depsipeptide,
initially was isolated from the marine sponge Jaspis splen-
dens in 1986.1 It was later found in other marine sponges,
including Auletta sp., H. minor, and Cymbastela sp.2 Jas-
plakinolide exhibited a number of very interesting biological
properties. It is active against 36 human solid tumor types
in cell culture assays.3 It has also exhibited other important
biological properties, including insecticidal, antifungal, and
antihelminthic activities.4 The mechanism of action is known
to involve stabilization of actin filaments by binding to
F-actin similar to phalloidin.5 Preclinical trials of jasplakino-
lide were carried out by the National Cancer Institute as an
anti-actin agent. However, the study was terminated as it
showed significant toxicity.6 Jasplakinolide is often used as
a molecular probe for actin polymerization studies. Its
biological properties and structural features attracted attention
for total synthesis7 and structural modification.8 We recently
reported an enantioselective total synthesis of (-)-doliculide,
(5) (a) Mayer, A. M. S. Pharmacology 1999, 41, 159. (b) Bubb, M. R.;
Spector, I.; Beyer, B. B.; Fosen, M. K. J. Biol. Chem. 2000, 275, 5163. (c)
Fabian, I.; Halperin, D.; Lefter, S.; Mittelman, L.; Altstock, R. T.; Seaon,
O.; Tsarfaty, I. Blood 1999, 93, 3994.
(6) Bubb, M. R.; Senderowicz, A. M. J.; Sausville, E. A.; Duncan, K.
L. K.; Korn, E. D. J. Biol. Chem. 1994, 269, 14869.
(7) (a) Grieco, P. A.; Hon, Y. S. J. Am. Chem. Soc. 1988, 110, 1630. (b)
Chu, K. S.; Negrete, G. R.; Konopelski, J. P. J. Org. Chem. 1991, 56, 5196.
(c) Imaeda, T.; Rao, A. V.; Gurjar, M. K.; Nallaganchu, B. R.; Bhandari,
A. Tetrahedron Lett. 1993, 34, 7085. (d) Hanada, Y.; Shioiri, T. Tetrahedron
Lett. 1994, 35, 591. (e) Hirai, Y.; Yokota, K.; Momose, T. Heterocycles
1994, 39, 603.
(8) (a) Marimganti, S.; Yasmeen, S.; Fischer, D.; Maier, M. E. Chem.s
Eur. J. 2005, 11, 6687. (b) Tabudravu, J. N.; Morris, L. A.; Milne, B. F.;
Jaspars, M. Org. Biomol. Chem. 2005, 5, 745.
(1) (a) Crews, P.; Manes, L. V.; Boehler, M. Tetrahedron Lett. 1986,
27, 2797. (b) Zabriskie, T. M.; Klocke, J. A.; Ireland, C. M.; Marcus, A.
H.; Molinski, T. F.; Faulkner, D. J.; Xu, C.; Clardy, J. C. J. Am. Chem.
Soc. 1986, 108, 3123.
(2) Isolation: (a) Crews, P.; Farias, J. J.; Emrich, R.; Keifer, P. A. J.
Org. Chem. 1994, 59, 2932. (b) Talpir, R.; Benayahu, Y.; Kashman, Y.;
Pannell, L.; Schleyer, M. Tetrahedron Lett. 1994, 35, 4453. (c) Chevallier,
C.; Richardson, A. D.; Edler, M. C.; Hamel, E.; Harper, M. K.; Ireland, C.
M. Org. Lett. 2003, 5, 3737.
(3) Inman, W.; Crews, P. J. Am. Chem. Soc. 1989, 111, 2822.
(4) (a) Crews, P.; Manes, L. V.; Boehler, M. Tetrahedron Lett. 1986,
27, 2797. (b) Braekman, J. C.; Daloze, D.; Moussiaux, B. J. Nat. Prod.
1987, 50, 994. (c) Takayuki, I.; Hamada, Y.; Shioiri, T. Tetrahedron Lett.
1994, 35, 591.
10.1021/ol070855h CCC: $37.00
© 2007 American Chemical Society
Published on Web 05/08/2007