¯
˚
group P1, a = 7.74590(10), b = 11.0192(2), c = 16.6519(3) A, a =
3
109.2590(10), b = 92.6450(10), c = 90.7540(10), V = 1339.72(4) A , Z = 2,
˚
Dc = 1.221 Mg m23, R1 = 0.0376, wR2 = 0.0942, total reflections 5489,
observed reflections 4321. Compound 2a: C26H33O4, Mr = 409.52,
monoclinic, space group P21/c, a = 6.2893(2), b = 7.9701(2), c =
=
3
43.7044(11) A, b = 92.9470(10), V = 2187.84(10) A , Z = 4, Dc
˚
˚
1.243 Mg m23, R1 = 0.0409, wR2 = 0.1077, total reflections 5390, observed
reflections 4936. The data were collected on a Bruker APEX II CCD with
˚
Mo-Ka radiation (l = 0.71073 A) at 90(2) K. Reflections were reduced by
the SAINT program. The structures were solved by direct methods and
refined by a full-matrix least-squares technique based on F2 using the
SHELXL97 program. CCDC 1: 630993, 2: 630994, 1a: 630996, 2a: 630995.
For crystallographic data in CIF or other electronic format see DOI:
10.1039/b700073a
Fig. 4 (Left) Electron density change after 20 min exposure by 325 nm
light of a crystal of 1a (contour level 0.3 e A23). Plane through the central
1 (a) K. Kinbara, A. Kai, Y. Maekawa, Y. Hashimoto, S. Naruse,
M. Hasegawa and K. Saigo, J. Chem. Soc., Perkin Trans. 2, 1996,
247–253; (b) A. Matsumoto, T. Odani, M. Chikada, K. Sada and
M. Miyata, J. Am. Chem. Soc., 1999, 121, 11122–11129; (c) W. G. Skene,
E. Couzigne´ and J.-M. Lehn, Chem. Eur. J., 2003, 9, 5560–5566; (d)
˚
atoms C1, C2, C3. The non-hydrogen atoms labelled ‘a’ belong to the
displaced molecule. (Right) As left, in the intermolecular HOTMK-BCH
H-bond region. Plane through the atoms C17, O3, O5.
ˇ ´
M. Nishio, CrystEngComm, 2004, 6, 130–158; (e) X. Gao, T. Friˇscic and
L. R. MacGillivray, Angew. Chem., Int. Ed., 2004, 43, 232–236.
2 (a) T. Caronna, R. Liantonio, T. A. Logothetis, P. Metrangolo, T. Pilati
and G. Resnati, J. Am. Chem. Soc., 2004, 126, 4500–4501.
3 (a) L. R. MacGillivray, G. S. Papaefstathiou, T. Friˇscˇic´, D. B. Varshney
and T. D. Hamilton, Top. Curr. Chem., 2004, 248, 201–221; (b) J. Yang,
M. B. Dewal and L. S. Shimizu, J. Am. Chem. Soc., 2006, 128,
8122–8123.
successive experiments on different crystals. However when after
exposure at 90 K the crystals were warmed to room temperature,
the crystals did not remain transparent and turned into a white
solid. Subsequent NMR analysis of a solution in d6-DMSO
indicates a low-concentration presence of the same products as
obtained by room-temperature irradiation, i.e. that of combination
of the secondary geminate pair (2,3-bis(p-hydroxyphenyl)-2,3-
dimethylbutane), as well as a small amount of the unidentified side
product. It is possible that these products are formed on or close to
the surface of the crystal. The photoinduced structural changes in
the crystals indicate that a photon-triggered process does occur,
even though no changes were observed in atomic connectivity in
the bulk of the crystals. Low-temperature EPR experiments would
be most useful for further elucidation of these observations.
In summary, the evidence indicates that formation of an
intermolecular H-bond between the carbonyl (CLO) and phenol
(OH) groups of 2,2,4,4-tetramethyl-1,3-diarylacetone 1 in the solid
state quenches the photodecarbonylation reaction. Chemical
modification, such as substitution of one p-OH by p-OMe, leads
to alternative crystal packing and allows the reaction to proceed.
The reaction can also be turned on by co-crystallization with a
hydrogen-bond acceptor such as 4,49-biscyclohexanone, showing
how solid-state reactivity can be manipulated by applying the
methods of crystal engineering.
4 M. Chowdhury and B. M. Kariuki, Cryst. Growth Des., 2006, 6,
774–780.
5 (a) F. Toda, H. Miyamoto, T. Tamashima, M. Kondo and Y. J. Ohashi,
J. Org. Chem., 1999, 64, 2690–2693; (b) A. Natarajan, K. Wang,
V. Ramamurthy, J. R. Scheffer and B. Patrick, Org. Lett., 2002, 4,
1443–1446; (c) W. Xia, C. Yang, J. R. Scheffer and B. O. Patrick,
CrystEngComm, 2006, 8, 388–390.
6 R. Boch, C. Bohne and J. C. Scaiano, J. Org. Chem., 1996, 61,
1423–1428.
7 (a) N. J. Turro, A. L. Buchachenko and V. F. Tarasov, Acc. Chem.
Res., 1995, 28, 69–80; (b) T. Choi, K. Peterfy, S. I. Khan and M. Garcia-
Garibay, J. Am. Chem. Soc., 1996, 118, 12477–12478; (c) D. Weiss, in
Advances in Organic Photochemistry, ed. A. Padwa, Marcel Dekker,
New York, 1981, pp. 347–420.
8 (a) T. Choi, D. Cizmeciyan, S. I. Khan and M. A. Garcia-Garibay,
J. Am. Chem. Soc., 1995, 117, 12893–12894; (b) Z. Yang and
M. A. Garcia-Garibay, Org. Lett., 2000, 2, 1963–1965; (c) Z. Yang,
D. Ng and M. A. Garcia-Garibay, J. Org. Chem., 2001, 66, 4468–4475;
(d) D. Ng, Z. Yang and M. A. Garcia-Garibay, Tetrahedron Lett., 2001,
42, 9113–9116; (e) D. Ng, Z. Yang and M. A. Garcia-Garibay,
Tetrahedron Lett., 2002, 43, 7063–7066; (f) C. J. Mortko, H. Dang,
L. M. Campos and M. A. Garc´ıa-Garibay, Tetrahedron Lett., 2003, 44,
6133–6136; (g) C. J. Mortko and M. A. Garcia-Garibay, J. Am. Chem.
Soc., 2005, 127, 7994–7995.
9 M. J. E. Resendiz and M. A. Garcia-Garibay, Org. Lett., 2005, 7,
371–375.
10 N. Isaacs, in Physical Organic Chemistry, Longman, London–
Singapore, 2nd edn, 1995, pp. 146–192.
11 See, for example CCDC 631136, 631137, 630996, 630997, 631134,
632496.
12 (a) P. J. Wagner, R. J. Truman and J. C. Scaiano, J. Am. Chem. Soc.,
1985, 107, 7093–7097; (b) P. J. Wagner, R. Pabon, B. S. Park, A. R. Zand
and D. L. Ward, J. Am. Chem. Soc., 1994, 116, 589–596; (c) W. J. Leigh,
E. C. Lathioor and M. J. St. Pierre, J. Am. Chem. Soc., 1996, 118,
12339–12348; (d) L. Biczo´k, T. Be´rces and H. Linschitz, J. Am. Chem.
Soc., 1997, 119, 11071–11077.
13 (a) X. G. Lei, G. W. Wang, Y. C. Liu and N. J. Turro, J. Photochem.
Photobiol. A: Chem., 1992, 67, 57–65; (b) T. Noh, X. G. Lei and
N. J. Turro, J. Am. Chem. Soc., 1993, 115, 3105–3110.
14 (a) W. M. Nau and U. Pischel, in Molecular and Supramolecular
Photochemistry, ed. V. Ramamurthy and K. S. Schanze, CRC Press,
Boca Raton, FL, 2006, vol. 14, pp. 75–129; (b) G. W. Suter, U. P. Wild
and K. Schaffner, J. Phys. Chem., 1986, 90, 2358–2361.
We would like to thank Ivan Nemec for performing the
microanalyses, and Shao-Liang Zhang for careful reading of the
manuscript. We are grateful to Prof. M. A. Garcia-Garibay for
providing an early sample of 3. Support of this work by the
National Science Foundation (CHE0236317) is gratefully
acknowledged.
Notes and references
§ Crystal data: Compound 1: C19H22O3, Mr = 298.37, monoclinic, space
˚
group P21/c, a = 10.0719(2), b = 11.2639(2), c = 14.2688(3) A, b =
3
98.7710(10), V =1599.85(5) A , Z = 4, Dc = 1.239 Mg m23, R1 = 0.0354,
˚
wR2 = 0.0944, total reflections 3682, observed reflections 3214. Compound
2: C40H50O7, Mr = 642.80, monoclinic, space group P21, a = 12.517(3), b =
3
˚
˚
6.3855(13), c = 21.558(4) A, b = 90.98(3), V = 1722.7(6) A , Z = 2 Dc =
1.239 Mg m23, R1 = 0.0354, wR2 = 0.0991, total reflections 8471, observed
reflections 7987. Compound 1a: C31H40O5, Mr = 492.63, triclinic, space
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 2399–2401 | 2401