COMMUNICATIONS
Synthesis of Allenes Bearing Phosphine Oxide Groups
[4] X. Pu, X. Qi, J. M. Ready, J. Am. Chem. Soc. 2009, 131,
Synthesis of Indolizinium Salt 13
10364–10365.
To a solution of gold complex 12b (140 mg, 0.13 mmol,
1 equiv.) in CH2Cl2 (2 mL) was added dropwise TfOH
(12 mL, 0.14 mmol, 1.08 equiv.). After 6 h at room tempera-
ture, a black solid precipitated. The reaction was monitored
by 31P NMR until disappearance of the peaks of starting
gold complex 12b. The black solid was removed by filtration
on Celiteꢁ. Water was added to the residue (10 mL) and
the resultant mixture was diluted with CH2Cl2 (5 mL). The
aqueous phase was extracted with CH2Cl2 (310 mL) and
the combined organic layers were washed with brine
(10 mL), dried over anhydrous MgSO4, filtered and concen-
trated under reduced pressure. The residue was purified by
precipitation in CH2Cl2 and Et2O to afford 13 as a pale
brown solid; yield: 84 mg (quant.).
[5] F. Cai, X. Pu, X. Qi, V. Lynch, A. Radha, J. M. Ready,
J. Am. Chem. Soc. 2011, 133, 18066–18069.
[6] a) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014,
47, 953–965; see also: b) A. Simonneau, F. Jaroschik, D.
Lesage, M. Karanik, R. Guillot, M. Malacria, J.-C.
Tabet, J.-P. Goddard, L. Fensterbank, V. Gandon, Y.
Gimbert, Chem. Sci. 2011, 2, 2417–2422; c) F. Schrçder,
C. Tugny, E. Salanouve, H. Clavier, L. Giordano, D.
Moraleda, Y. Gimbert, V. Mouris-Mansuy, J.-P. God-
dard, L. Fensterbank, Organometallics 2014, 33, 4051–
4056; d) M. Guitet, P. Zhang, F. Marcelo, C. Tugny, J.
Jimenez-Barbero, O. Buriez, C. Amatore, V. Mouris-
Mansuy, J.-P. Goddard, L. Fensterbank, Y. Zhang, S.
Roland, M. MØnand, M. Sollogoub, Angew. Chem.
2013, 125, 7354–7359; Angew. Chem. Int. Ed. 2013, 52,
7213–7218; e) F. Nzulu, A. Bontemps, J. Robert, M.
Barbazanges, L. Fensterbank, J.-P. Goddard, M. Malac-
ria, C. Ollivier, M. Petit, J. Rieger, F. Stoffelbach, Mac-
romolecules 2014, 47, 6652–6656.
[7] a) M. Malacria, L. Fensterbank, V. Gandon, Top. Curr.
Chem. 2011, 302, 157–182; b) E. Soriano, I. Fernandez,
Chem. Soc. Rev. 2014, 43, 3041–3105; c) W. Yang,
A. S. K. Hashmi, Chem. Soc. Rev. 2014, 43, 2941–2955.
[8] A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann,
Angew. Chem. 2008, 120, 3254–3258; Angew. Chem.
Int. Ed. 2008, 47, 3210–3214.
Synthesis of (À)-17 from Allene (À)-8
To a solution of Ph3PAuCl (4 mg, 0.009 mmol, 0.05 equiv.) in
dry and degassed CH2Cl2 (1.8 mL) was added AgSbF6
(3 mg, 0.009 mmol, 0.05equiv.). After 5 min stirring at room
temperature, the formation of AgCl was observed as a white
solid. Then, a solution of allene (À)-8 (98 mg, 98% ee,
0.18 mmol, 1 equiv.) in CH2Cl2 (8.5 mL) was added. The re-
action mixture was stirred at reflux temperature for 4 h and
monitored by TLC. When the reaction was complete, the
mixture was filtered through a short pad of Celiteꢁ and
washed with Et2O and CH2Cl2. The solution was concentrat-
ed under reduced pressure. The residue was purified by
silica gel chromatography with EtOAc/Pentane (gradient:
from 3:7 until 1:1) as eluent to afford cyclic product (À)-17
as a pale yellow solid; yield: 83 mg (97% ee, 85%).
[9] T. J. Brown, A. Sugie, M. G. Dickens, R. A. Widenhoe-
fer, Organometallics 2010, 29, 4207–4209.
[10] For a review on poly-coordinate gold(I) salts, see:
a) M. C. Gimeno, A. Laguna, Chem. Rev. 1997, 97,
511–522; for the extra-coordination by a P=O moiety,
see: b) C. Hahn, L. Cruz, A. Villalobos, L. Garza, S.
Adeosun, Dalton Trans. 2014, 43, 16300–16309.
Acknowledgements
[11] S. Yu, S. Ma, Chem. Commun. 2011, 47, 5384–5418.
[12] Crystallographic data for structures of compounds 11a,
11b and 13 were deposited at the Cambridge Crystallo-
graphic Data Centre with numbers CCDC 1055995
(11a), CCDC 1055996 (11b) and CCDC 1055997 (13).
These data can be obtained free of charge from The
We thank UPMC, CNRS, IUF, the Franco Thai Scholarship
Program administered by CAMPUS FRANCE. We are grate-
ful to Marc Petit (IPCM) for fruitful discussions, Omar
Khaled (IPCM) for mass spectrometry.
Cambridge
Crystallographic Data
Centre via
[13] a) T. Schwier, A. W. Sromek, D. M. L. Yab, D. Cher-
nyak, V. Gevorgyan, J. Am. Chem. Soc. 2007, 129,
9868–9878; for related species that are based on
oxygen rather than nitrogen, see: b) L.-P. Liu, B. Xu,
M. S. Mashuta, G. B. Hammond, J. Am. Chem. Soc.
2008, 130, 17642–17643; c) R. Dçpp, C. Lothschütz, T.
Wurms, M. Pernpointer, S. Keller, F. Rominger,
A. S. K. Hashmi, Organometallics 2011, 30, 5894–5903.
[14] F. Kolundzic, A. Murali, P. Perez-Galan, J. O. Bauer, C.
Strohmann, K. Kumar, H. Waldmann, Angew. Chem.
2014, 126, 8260–8264; Angew. Chem. Int. Ed. 2014, 53,
8122–8126.
[15] For reviews, see: a) L.-P. Liu, G. B. Hammond, Chem.
Soc. Rev. 2012, 41, 3129–3139; b) A. S. K. Hashmi,
Angew. Chem. 2010, 122, 5360–5369; Angew. Chem.
Int. Ed. 2010, 49, 5232–5241; see also: c) A. S. K.
Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew.
Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed.
2000, 39, 2285–2288; d) Y. Chen, D. Wang, J. L. Peter-
References
[1] For a monograph, see: a) N. Krause, A. S. K. Hashmi,
(Eds.), Modern Allene Chemistry, Wiley-VCH, Wein-
heim, 2004; b) for a review, see: S. Yu, S. Ma, Angew.
Chem. 2012, 124, 3128–3167; Angew. Chem. Int. Ed.
2012, 51, 3074–3112; for some recent examples, see:
c) M. Hasegawa, Y. Sone, S. Iwata, H. Matsuzawa, Y.
Mazaki, Org. Lett. 2011, 13, 4688–4691.
[2] For selected examples, see: a) S. Sentets, R. Serres, Y.
Ortin, N. Lugan, G. Lavigne, Organometallics 2008, 27,
2078–2091; b) E. V. Banide, J. P. Grealis, H. Müller-
Bunz, Y. Ortin, M. Casey, C. Mendicute-Fierro, M. C.
Lagunas, M. J. McGlinchey, J. Organomet. Chem. 2008,
693, 1759–1770; c) S. Milosevic, E. V. Banide, H.
Müller-Bunz, D. G. Gilheany, M. J. McGlinchey, Orga-
nometallics 2011, 30, 3804–3817.
[3] S. Lçhr, J. Averbeck, M. Schürmann, N. Krause, Eur. J.
Inorg. Chem. 2008, 552–556.
Adv. Synth. Catal. 2015, 357, 2213 – 2218
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2217