scattering experiments (DLS) were performed using a CGS-3
goniometer (ALV GmbH) equipped with an ALV/LSE-5003
multiple-s digital correlator (ALV GmbH), a He-Ne laser
(l ¼ 632.8 nm), and a C25P circulating water bath (Thermo
Haake). A cumulant analysis was applied to obtain the diffusion
coefficient (D) of the micelles in solution. The hydrodynamic
radius (RH) of the micelles was obtained using the Stokes–Ein-
stein eqn (1),
Joelle Pelletier are acknowledged for their assistance in
measuring MIC of aminoglycosides.
References
1 M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober,
M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk,
M. Urban, F. M. Winnik, S. Zauscher, I. Luzinov and S. Minko,
Nat Mater, 2010, 9, 101–113.
2 A. Mata, L. Hsu, R. Capito, C. Aparicio, K. Henrikson and
S. I. Stupp, Soft Matter, 2009, 5, 1228–1236.
kBT
D ¼
(1)
6phsRH
3 K. Channon and C. E. MacPhee, Soft Matter, 2008, 4, 647–652.
4 A. J. Dirks, S. S. van Berkel, H. I. V. Amatdjais-Groenen, F. Rutjes,
J. Cornelissen and R. J. M. Nolte, Soft Matter, 2009, 5, 1692–1704.
5 Y. Lee and K. Kataoka, Soft Matter, 2009, 5, 3810–3817.
6 K. K. Upadhyay, H. G. Agrawal, C. Upadhyay, C. Schatz, J. F. Le
Meins, A. Misra and S. Lecommandoux, Crit. Rev. Ther. Drug
Carr. Syst., 2009, 26, 157–205.
7 S. Kim, J. H. Kim, O. Jeon, I. C. Kwon and K. Park, Eur. J. Pharm.
Biopharm., 2009, 71, 420–430.
8 A. Harada and K. Kataoka, Macromolecules, 1995, 28, 5294–5299.
9 A. V. Kabanov, T. K. Bronich, V. A. Kabanov, K. Yu and
A. Eisenberg, Macromolecules, 1996, 29, 6797–6802.
10 M. A. C. Stuart, N. A. M. Besseling and R. G. Fokkink, Langmuir,
1998, 14, 6846–6849.
11 K. Osada, R. J. Christie and K. Kataoka, J. R. Soc. Interface, 2009, 6,
S325–S339.
12 C. H. Wang, W. T. Wang and G. H. Hsiue, Biomaterials, 2009, 30,
3352–3358.
13 H. Pinto-Alphandary, A. Andremont and P. Couvreur, Int.
J. Antimicrob. Agents, 2000, 13, 155–168.
where hs is the viscosity of the solvent, kB is the Boltzmann
constant, and T is the absolute temperature. The constrained
regularized CONTIN method was used to obtain the particle size
distribution. The data presented are the mean of six measurements
ꢃ S.D. Solutions for analysis were filtered through a 0.45 mm
Millex Millipore PVDF membrane prior to measurement.
Isothermal titration calorimetry (ITC) measurements were carried
out with a Microcal VP-ITC instrument. Solutions of neomycin
sulfate, paromomycin sulfate and CMD-PEG were prepared in
a phosphate buffer (10 mM, pH 7.0). Prior to measurements all
solutions were degassed under vacuum for about 10 min to elim-
inate any air bubbles. Aliquots of the neomycin sulfate solution
(10 mL, 6.0 g/L, 6.6 mM, 39.6 mM amine) or paromomycin sulfate
solution (10 mL, 5.65 g/L, 7.92 mM, 39.6 mM amine) were injected
from a 300 mL continuously stirred (300-rpm) syringe into a solu-
tion of CMD-PEG (1.43 mL, 0.75 g/L, 2.61 mM carboxylate) at
14 D. E. Owens and N. A. Peppas, Int. J. Pharm., 2006, 307, 93–102.
15 G. M. Soliman and F. M. Winnik, Int. J. Pharm., 2008, 356, 248–258.
16 G. M. Soliman, A. O. Choi, D. Maysinger and F. M. Winnik,
Macromol. Biosci., 2010, 10, 278–288.
ꢂ
25 C. Heats of dilution and mixing were determined in control
experiments by injecting aliquots (10 mL) of each drug solution
into the same buffer (1.43 mL). A total of 28 aliquots were injected
into the sample cell in intervals of 300 s. The calorimetric data were
analyzed and converted to enthalpy change using Microcal
ORIGIN 7.0.
17 E. Durante-Mangoni, A. Grammatikos, R. Utili and M. E. Falagas,
Int. J. Antimicrob. Agents, 2009, 33, 201–205.
18 M. P. Mingeot-Leclercq, Y. Glupczynski and P. M. Tulkens,
Antimicrob. Agents Chemother., 1999, 43, 727–737.
19 D. Moazed and H. F. Noller, Nature, 1987, 327, 389–394.
20 C. Roberta, B. Alessandro, P. Valerio, M. Elisabetta, Z. Gian Paolo
and G. Maria Rosa, J. Pharm. Sci., 2003, 92, 1085–1094.
€
21 J. Hombach, H. Hoyer and A. Bernkop-Schnurch, Eur. J. Pharm.
Sci., 2008, 33, 1–8.
4. Conclusion
22 M. Halwani, C. Mugabe, A. O. Azghani, R. M. Lafrenie, A. Kumar
and A. Omri, J. Antimicrob. Chemother., 2007, 60, 760–769.
23 C. Mugabe, M. Halwani, A. O. Azghani, R. M. Lafrenie and A. Omri,
Antimicrob. Agents Chemother., 2006, 50, 2016–2022.
24 A. M. Abraham and A. Walubo, Int. J. Antimicrob. Agents, 2005, 25,
392–397.
25 M. C. Lecaroz, M. J. Blanco-Prieto, M. A. Campanero, H. Salman
and C. Gamazo, Antimicrob. Agents Chemother., 2007, 51, 1185–1190.
26 R. Cavalli, M. R. Gasco, P. Chetoni, S. Burgalassi and
M. F. Saettone, Int. J. Pharm., 2002, 238, 241–245.
27 H. F. Chuang, R. Smith, C. xe and P. T. Hammond,
Biomacromolecules, 2008, 9, 1660–1668.
28 C. Mugabe, A. O. Azghani and A. Omri, Int. J. Pharm., 2006, 307,
244–250.
29 P. A. Bridges and K. M. G. Taylor, J. Pharm. Pharmacol., 2001, 53,
393–398.
30 S. Prior, B. Gander, J. M. Irache and C. Gamazo, J. Antimicrob.
Chemother., 2005, 55, 1032–1036.
31 A. Harada and K. Kataoka, J. Am. Chem. Soc., 1999, 121, 9241–9242.
32 N. W. Luedtke, T. J. Baker, M. Goodman and Y. Tor, J. Am. Chem.
Soc., 2000, 122, 12035–12036.
Electrostatic interactions between two aminoglycosides:
neomycin and paromomycin and different CMD-PEG copoly-
mers led to the formation of PIC micelles with a drug/CMD core
and a PEG corona. The interactions were entropically driven and
stronger in the case of neomycin/CMD-PEG compared to paro-
momycin/CMD-PEG. Aminoglycosides/CMD-PEG micelles
were unstable under physiological conditions (pH 7.4, [NaCl] ¼
150 mM). Micelles stability was significantly improved by
hydrophobic modification of CMD-PEG or guanidinylation of
paromomycin. Neomycin/Dod38-CMD-PEG micelles resisted
salt-induced disintegration for up to 200 mM. Smaller micelle size
and better stability against salt were observed for drugs having
more cationic groups and polymers having both carboxylate and
dodecyl groups. The proposed approaches of micelle stabilization
could be applied to other unstable PIC micelles.
33 N. Nishiyama, M. Yokoyama, T. Aoyagi, T. Okano, Y. Sakurai and
K. Kataoka, Langmuir, 1999, 15, 377–383.
34 X. Yuan, Y. Yamasaki, A. Harada and K. Kataoka, Polymer, 2005,
46, 7749–7758.
Acknowledgements
35 O. S. Hernandez, G. M. Soliman and F. M. Winnik, Polymer, 2007,
48, 921–930.
36 M. Mauzac and J. Jozefonvicz, Biomaterials, 1984, 5, 301–304.
ꢀ
37 S. Hanessian, T. Takamoto, R. Masse and G. Patil, Can. J. Chem.,
1978, 56, 1482–1491.
The work was supported in part by a grant of the Natural
Sciences and Engineering Research Council of Canada to FMW.
GMS thanks the Ministry of Higher Education, Egypt for
granting him a scholarship. Prof. Jeffrey W. Keillor and Prof.
This journal is ª The Royal Society of Chemistry 2010
Soft Matter, 2010, 6, 4504–4514 | 4513