J. Kaizer et al. / Inorganic Chemistry Communications 9 (2006) 1037–1039
1039
[7] G.S. Allgood, J.J. Perry, J. Bacteriol. 168 (1986) 563.
[8] Y. Naruta, K. Maruyama, J. Am. Chem. Soc. 113 (1991) 3595.
[9] A.C. Rosenzweig, C.A. Frederick, S.J. Lippard, P. Nordlund, Nature
366 (1993) 537.
10
8
[10] E.J. Larson, V.L. Pecoraro, J. Am. Chem. Soc. 113 (1991) 7809.
[11] M.U. Triller, W.-Y. Hsieh, V.L. Pecoraro, A. Rompel, B. Krebs,
Inorg. Chem. 41 (2002) 5544.
[12] M.L. Pires dos Santos, A. Faljoni-Ala´rio, A.S. Mangrich, A.M. da
Costa Ferreira, J. Inorg. Biochem. 71 (1998) 71.
[13] J. Gao, A.E. Martell, J.H. Reibenspies, Inorg. Chim. Acta 346 (2003)
32.
40
30
20
10
0
6
4
[14] J. Gao, J.H. Reibenspies, A.E. Martell, S. Yizhen, D. Chen, Inorg.
Chem. Commun. 5 (2002) 1095.
2
0
2
4
6
8
10
10-6[Cu(phen)( -baa)2]2 (M2)
N
´
[15] J. Kaizer, R. Csonka, G. Speier, M. Giorgi, M. Reglier, J. Mol. Catal.
A: Chem. 236 (2005) 12.
0
[16] R.G. Bhirud, T.S. Srivastava, Inorg. Chim. Acta 173 (1990) 121.
[17] U. Weser, K.H. Sellinger, E. Lengfelder, W. Werner, J. Strahle,
Biochim. Biophys. Acta 631 (1980) 232.
0
5
10
15
20
25
30
10-2[H2O2] (M)
[18] U. Deuschle, U. Weser, Inorg. Chim. Acta 91 (1984) 237.
[19] Synthesis of Cu(N-baa)2(phen) (3): Cu(OMe)2 (0.126 g, 1 mmol), N-
benzoylanthranilic acid (0.482 g, 2 mmol) and 1,10-phenanthroline
monohydrate (0.196 g, 1 mmol) were dissolved in 20 cm3 of acetoni-
trile under argon. After 10 h stirring, the product was collected by
filtration, washed with diethyl ether, dried in vacuum and then
Fig. 2. Initial rate of decomposition of hydrogen peroxide as a function of
[H2O2] in DMF at 20 ꢁC. Inset: plots of Vin versus [Cu(N-baa)2(phen)]2.
sus the initial concentration of Cu (N-baa)2(phen) (3) to
establish a rate law of d[O2]/dt= kapp[Cu(N-baa)2(phen)]2
(Fig. 2). This result supports the fact that the active form
of the (carboxylato)copper complex 3 similar to the com-
pound 2 is dimeric during the catalytic process.
A variation of H2O2 concentration revealed saturation
behavior with Kass value of about 20 MÀ1. These two phe-
nomena indicated that under the condition of steady-state
turnover, the binding of hydrogen peroxide to the Cu(II)–
Cu(II) center is much more favored compared to its mono-
meric form.
recrystallized from DMF (0.62 g, 85%). M.p. 165 ꢁC. IR (KBr) cmÀ1
:
3446 m, 3150 vw, 3109 vw, 3062 vw, 1675 s, 1589 vs, 1510 vs, 1449 m,
1436 m, 1424 m, 1421 m, 1379 s, 1304 s, 1257 m, 1106 w, 848 m, 761
m, 723 m, 711 m, 667 m, 591 w, 536 w. UV–Vis (DMF) kmax (loge/
dm3 molÀ1 cmÀ1): 316 (4.17); 680 (1.88). Anal. Calcd For
C40H28N4O6Cu: C, 66.34; H, 3.90; N, 7.74%. Found: C, 67.11; H,
3.98; N, 7.59%.
´
[20] J. Kaizer, T. Csay, M. Czaun, G. Speier, M. Reglier, M. Giorgi,
Inorg. Chem. Commun. 8 (2005) 813.
[21] G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227.
[22] A.L. Abuhijleh, J. Inorg. Biochem. 68 (1997) 167.
[23] E. Labisbal, J.A.G. Vazquez, J. Romero, S. Picos, A. Sousa, A.
Castineiras, C.M. Mossmer, Polyhedron 14 (1995) 663.
[24] Crystal data for 3: C40H28CuN4O6, 724.22 g molÀ1, monoclinic, C2/c,
Acknowledgements
˚
˚
˚
a = 29.0089(9) A, b = 10.2201(4) A, c = 11.6087(3) A, b = 109.175(3)
(ꢁ), Z = 8, V = 3250.73(18) A , l(Mo-Ka) = 0.730 mmÀ1, dcalcd
=
3
˚
Financial supports of the Hungarian National Research
Fund (OTKA T-043414) and Budakonzum Ltd. are grate-
fully acknowledged.
1.480 g cmÀ3, T = 293(2) K, F(000) = 1492. The intensity data were
collected with a Nonius Kappa CCD single-crystal diffractometer
using Mo-Ka radiation (k = 0.71073). Reflections collected = 11540,
reflections total = 2973, reflections unique = 2582. The structure was
refined to R = 0.0489 (0.0600) and wR2 = 0.1456 for the reflections
Appendix A. Supplementary data
with I > 2r(I) (all data) and max. resd. density = 0.370 eAÀ3. The
˚
computer program used was SHELXL97 [25]. The structure was
solved by direct and difmap methods (SIR92) [26]. CCDC Reference
Number: 600586.
Supplementary data associated with this article can be
[25] G.M. Sheldrick, SHELXL97 Program for the refinement of crystal
structures, University of Go¨ttingen, Germany, 1997.
References
[26] A. Altamore, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C.
Burla, G. Polidori, M.J. Camalli, J. Appl. Cryst. 27 (1994) 435.
[27] Study of catalase-like activity: All reactions were carried out at 20 ꢁC
in a 50 cm3 reactor containing a stirring bar under air. In a typical
experiment, DMF (30 cm3) was added to the complex (0.05 mmol)
and the flask was closed with a rubber septum. Hydrogen peroxide
(5 mmol) was injected through the septum with a syringe. The
reactor was connected to a graduated burette filled with water and
dioxygen evolution was measured volumetrically at time intervals of
0.5 min. Observed initial rates were expressed as mol dmÀ3 sÀ1 by
taking the volume of the solution (30 cm3) into account and
calculated from the maximum slope of curve describing the evolution
of O2 versus time.
[1] I. Fridovich, Ann. Rev. Biochem. 64 (1995) 97.
[2] O. Hayaish, E. Niki, M. Kondo, Y. Yoshikawa (Eds.), Medical,
Biochemical and Chemical Aspects of Free Radicals, Elsevier,
Amsterdam, 1990.
[3] A. Messerschmidt, R. Huber, T. Poulus, K. Wieghardt (Eds.), Hand-
book of Metalloproteins, John Wiley & Sons Ltd., New York, 2001.
[4] Y. Kono, I. Fridovich, J. Biol. Chem. 258 (1983) 6015.
[5] W.F. Beyer Jr., I. Fridovich, Biochemistry 24 (1985) 6460.
[6] V.V. Barynin, P.D. Hempstead, A.A. Vagin, S.V. Antonyuk, W.R.
Melik-Adamyan, V.S. Lamzin, P.M. Harrison, P.J. Artymyuk, J.
Inorg. Biochem. 67 (1997) 196.