Alongside Charge-Transfer Interactions
A R T I C L E S
to-face [CH‚‚‚π] interactions,11 hydrogen bonding, and CT
interactions.12 One class of CT interactions occurs when the
central cavity of a cyclophane is blocked, thereby forcing the
π-donor and -acceptor pair to interact in an alongside13 manner.
These alongside interactions can be further subdivided based
upon the relative orientation of the donor/acceptor pair into face-
to-face11c,13 and edge-to-face of which the latter arise in specific
situations.14 For both synthetic purposes and machine-like
functionality, a significant number of the more complex
interlocked structures have been relying on the sum of the
noncovalent interactions that occur between the tetracationic
π-electron-deficient cyclophane15 cyclobis(paraquat-p-phen-
ylene) (CBPQT4+) serving as a host and the efficient π-elec-
tron-rich guests, such as dioxynaphthalene (DNP),6c,d,e,16
tetrathiafulvalene (TTF),16b,d,17 monopyrrolotetrathiafulvalene
(MPTTF),18 and 1,4-dihydroquinone (HQ) units.6c,f,g,16a Once
the guests are accommodated inside the CBPQT4+ cyclophane’s
cavity, a characteristic color is observed that originates from
the CT interaction between the guest and the host. It is well
known that aromatic entities such as DNP and HQ give rise to
a distinct red or purple color, respectively,8a,18b-d,19 originating
from a weak CT electronic absorption band at ∼500 nm (ꢀ ≈
100’s M-1 cm-1), whereas inclusion of various TTF units
invariably results in formation of a more intense characteristic
CT band in the 750-850 nm (ꢀ ≈ 1000’s M-1 cm-1) region.18,20
The fact that the CT interaction between the CBPQT4+
cyclophane and the π-electron-rich guests gives rise to such
well-characterized and well-assigned CT bands has determined
that the analysis of CT bands has been both ubiquitous and of
prime importance particularly in cases when the structures and
dynamics of more complex interlocked molecules, such as
bistable [2]rotaxanes, have been examined.18
Most [2]catenanes and [2]rotaxanes prepared so far have been
characterized16-19,21 by a high degree of flexibility on account
of the fact that the various π-electron-rich units in the interlocked
systems have historically been linked by flexible poly(ethylene
glycol) (PEG) chains, a feature which has conferred a high
degree of folding and thereby allowed for various conformations
to exist in solution as well as in more condensed phases.10c,22
Building on the inherent flexibility of the interlocked com-
pounds, it has long been known that the dynamic nature of
nondegenerate two-station [2]catenanes and [2]rotaxanes can
lead to competing co-conformations in which some of them can
be surprisingly stable.21 In particular, [2]rotaxanes18b-d,21,23 have
been found to exist in co-conformations in which the tetracat-
ionic cyclophane is positioned on the weakest π-electron donor.
In such examples it was observed that the CBPQT4+ cyclophane
interacts in an alongside manner with the stronger π-electron
donor, confirmed by analysis18c,24 of the UV-vis-NIR absorp-
(7) (a) Amabilino, D. B.; Stoddart, J. F. Chem. ReV. 1995, 95, 2725-2828.
(b) Vo¨gtle, F.; Dunnwald, T.; Schmidt, T. Acc. Chem. Res. 1996, 29, 451-
460. (c) Breault, G. A.; Hunter, C. A.; Mayers, P. C. Tetrahedron 1999,
55, 5265-5293. (d) Hubin, T. J.; Kolchinski, A. G.; Vance, A. L.; Busch,
D. H. AdV. Supramol. Chem. 1999, 5, 237-357. (e) Raehm, L.; Hamilton,
D. G.; Sanders, J. K. M. Synlett 2002, 1743-1761. (f) Stoddart, J. F.; Tseng,
H.-R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4797-4800. (g) Gatti, G.;
Leo´n, S.; Wong, J. K. Y.; Bottari, G.; Altieri, A.; Morales, M. A. F.; Teat,
S. J.; Frochot, C.; Leigh, D. A.; Brouwer, A. M.; Zerbetto, F. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 10-14. (h) Leigh, D. A.; Pe´rez, E. M. Chem.
Commun. 2004, 2262-2263. (i) Sauvage, J.-P. Chem. Commun. 2005,
1507-1510. (j) Marlin, D. S.; Gonzalez, C.; Leigh, D. A.; Slawin, A. M.
Z. Angew. Chem., Int. Ed. 2006, 45, 77-83. (k) Dichtel, W. R.; Miljanic,
O. S.; Spruell, J. M.; Heath, J. M.; Stoddart, J. F. J. Am. Chem. Soc. 2006,
128, 10388-10390. (l) Nygaard, S.; Liu, Y.; Stein, P. C.; Flood, A. H.;
Jeppesen, J. O. AdV. Funct. Mater. 2007, 17, 751-762.
(8) (a) Badjic, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science
2004, 303, 1845-1849. (b) Badjic, J. D.; Ronconi, C. M.; Stoddart, J. F.;
Balzan, V.; Silvi, S.; Credi, A. J. Am. Chem. Soc 2006, 128, 1489-1499.
(9) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature 2003, 424,
174-179.
(10) (a) Saha, S.; Johansson, E.; Flood, A. H.; Tseng, H.-R.; Zink, J. I.; Stoddart,
J. F. Chem. Eur. J. 2005, 11, 5796-5804. (b) Guldi, D. M. Chem. Soc.
ReV. 2002, 31, 22-36. (c) Braunschweig, A. B.; Northrop, B. H.; Stoddart,
J. F. J. Mater. Chem. 2006, 16, 32-44.
(17) (a) Yamamoto, T.; Tseng, H.-R.; Stoddart, J. F.; Balzani, V.; Credi, A.;
Marchioni, F.; Venturi, M. Collect. Czech. Chem. Commun. 2003, 68,
1488-1514. (b) Tseng, H.-R.; Vignon, S. A.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2003, 43, 1491-1495. (c) Tseng, H.-R.; Vignon, S. A.; Celestre,
P. C.; Perkins, J.; Jeppesen, J. O.; Di, Fabio, A.; Ballardini, R.; Gandolfi,
M. T.; Venturi, M.; Balzani, V.; Stoddart, J. F. Chem. Eur. J. 2004, 10,
155-172.
(18) (a) Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F. Org. Lett. 2000,
2, 3547-3550. (b) Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2001, 40, 1216-1221. (c) Jeppesen, J. O.; Nielsen,
K. A.; Perkins, J.; Vignon, S. A.; Di Fabio, A.; Ballardini, R.; Gandolfi,
M. T.; Venturi, M.; Balzani, V.; Becher, J.; Stoddart, J. F. Chem. Eur. J.
2003, 9, 2982-3007. (d) Jeppesen, J. O.; Nygaard, S.; Vignon, S. A.;
Stoddart, J. F. Eur. J. Org. Chem. 2005, 196-220. (e) Nygaard, S.; Laursen,
B. W.; Flood, A. H.; Hansen, C. N.; Jeppesen, J. O. Chem. Commun. 2006,
2, 144-146. (f) Nygaard, S.; Leung, K. C.-F.; Aprahamian, I.; Ikeda, T.;
Saha, S.; Laursen, B. W.; Kim, S.-Y.; Hansen, S. W.; Stein, P. C.; Flood,
A. H.; Stoddart, J. F.; Jeppesen, J. O. J. Am. Chem. Soc. 2007, 129, 960-
970.
(19) Jeppesen, J. O.; Becher, J.; Stoddart, J. F. Org. Lett. 2002, 4, 557-560.
(20) (a) Devonport, W.; Blower, M. A.; Bryce, M. R.; Goldenberg, L. M. J.
Org. Chem. 1997, 62, 885-887. (b) Nielsen, M. B.; Jeppesen, J. O.; Lau,
J.; Lomholt, C.; Damgaard, D.; Jacobsen, J. P.; Becher, J.; Stoddart, J. F.
J. Org. Chem. 2001, 66, 3559-3563. (c) Nyggard, S.; Hansen, C. N.;
Jeppesen, J. O. J. Org. Chem. 2007, 72, 1617-1626.
(21) Choi, J. W.; Flood, A. H.; Steuerman, D. W.; Nygaard, S.; Braunschweig,
A. B.; Moonen, N. N. P.; Laursen, B. W.; Luo, Y.; DeIonno, E.; Peters, A.
J.; Jeppesen, J. O.; Xu, K.; Stoddart, J. F.; Heath, J. R. Chem. Eur. J. 2006,
12, 261-279.
(11) (a) Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995,
51, 8665-8701. (b) Adams, H.; Carver, F. J.; Hunter, C. A.; Morales, J.
C.; Seward, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 1542-1544. (c)
Guldi, D. M.; Luo, C.; Prato, M.; Troisi, A.; Zerbetto, F.; Scheloske, M.;
Dietel, A.; Bauer, W.; Hirsch, A. J. Am. Chem. Soc. 2001, 123, 9166-
9167. (d) Ma, B.-Q.; Coppens, P. Chem. Commun. 2003, 2290-2291.
(12) For an introduction and overview over the wide array of weak noncovalent
interactions please refer to the dollowing refs: (a) Hunter, C. A.; Sanders,
J. K. M. J. Am. Chem. Soc. 1990, 112, 5525-5534. (b) Steed, J. W.;
Atwood, J. L. Supramolecular Chemistry; John Wiley & Sons, Ltd.: New
York, 2000. (c) Schmittel, M.; Kalsani, V. Top. Curr. Chem. 2005, 245,
1-53.
(13) Menzer, S.; White, A. J. P.; Williams, D. J.; Belohradsky, M.; Hamers,
C.; Raymo, F. M.; Shipway, A. N.; Stoddart, J. F. Macromolecules 1998,
31, 295-307 and references therein.
(14) (a) For edge-to-face arrangements between TTF and CBPQT4+, see: Li,
Z.-T.; Becher, J. Chem. Commun. 1996, 639-640 and ref 6e. (b) For an
early identification of an end-on, edge-to-face CT interaction between a
TTF unit and CBPQT4+, see refs 6c,f. (c) For edge-to-face CT interactions
involving heterocyclic nitrogen and diazapyrenium cations, see: Becker,
H.-C.; Broo, A.; Norde´n, B. J. Phys. Chem. 1997, 101, 8853-8860. (d)
For inter-TTF edge-to-face arrangements of a neutral TTF dimer and the
CT interactions of a radical cation, see: Batsanov, A. S.; John, D. E.; Bryce,
M. R.; Howard, J. A. K. AdV. Mater. 1998, 10, 1360-1363. (e) For
[CH‚‚‚π] edge-to-face CT interactions involving pyridinium cations, see:
Acharya, P.; Plashkevych, O.; Morita, C.; Yamada, S.; Chattopadhyaya, J.
J. Org. Chem. 2003, 68, 1529-1538.
(15) (a) Anelli, P.-L. et al. J. Am. Chem. Soc. 1992, 114, 193-218. (b) Asakawa,
M.; Dehaen, W.; L’abbe´, G.; Menzer, S.; Nouwen, J.; Raymo, F. M.;
Stoddart, J. F.; Williams, D. J. J. Org. Chem. 1996, 61, 9591-9595.
(16) (a) Asakawa, M.; Ashton, P. R.; Balzani, V.; Brown, C. L.; Credi, A.;
Matthews, O. A.; Newton, S. P.; Raymo, F. M.; Shipway, A. N.; Spencer,
N.; Quick, A.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem. Eur.
J. 1999, 5, 860-875. (b) Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon,
S. A.; Northrop, B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough,
B.; Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.;
Stoddart, J. F. J. Am. Chem. Soc. 2005, 127, 9745-9759. (c) Liu, Y.;
Bonvallet, P. A.; Vignon, S. A.; Khan, S. I.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2005, 44, 3050-3055. (d) Liu, Y.; Saha, S.; Vignon, S. A.; Flood,
A. H.; Stoddart, J. F. Synthesis 2005, 19, 3437-3445.
(22) (a) Lee, I. C.; Frank, C. W.; Yamamoto, T.; Tseng, H.-R.; Flood, A. H.;
Stoddart, J. F.; Jeppesen, J. O. Langmuir 2004, 20, 5809-5828. (b)
Nørgaard, K.; Jeppesen, J. O.; Laursen, B. W.; Simonsen, J. B.; Weygand,
M.; Kjaer, J. K.; Stoddart, J. F.; Bjørnholm, T. J. Phys. Chem. B 2005,
109, 1063-1066. (c) Nørgaard, K.; Laursen, B. W.; Nygaard, S.; Kjaer,
K.; Tseng, H.-R.; Flood, A. H.; Stoddart, J. F.; Bjørnholm, T. Angew. Chem.,
Int. Ed. 2005, 44, 7035-7039. (d) Mendes, P. M.; Lu, W. X.; Tseng, H.-
R.; Shinder, S.; Iijima, T.; Miyaji, M.; Knobler, C. M.; Stoddart, J. F. J.
Phys. Chem. B 2006, 110, 3845-3848.
(23) Laursen, B. W.; Nygaard, S.; Jeppesen, J. O.; Stoddart, J. F. Org. Lett.
2004, 6, 4167-4170.
(24) Jeppesen, J. O.; Vignon, S. A.; Stoddart, J. F. Chem. Eur. J. 2003, 9, 4611-
4625.
9
J. AM. CHEM. SOC. VOL. 129, NO. 23, 2007 7355