alkaloids.7 The reaction of indoles with Baylis-Hillman
acetates8 could be catalyzed by indium tribromide to provide
the γ-allylic substitution products.9 However, direct substitu-
tion at the R position of Baylis-Hillman adducts is very
rare.8a Cyclic enones are important starting materials in the
Baylis-Hillman reaction,10 and its B-H adducts could be
applied in the synthesis of heterocycles such as quinolines10f-g
and 2H-indazole derivatives.10h In some Pd-catalyzed reac-
tions, cyclic B-H adducts (Figure 1, b) could favor
R-substitution which was different with acyclic B-H adducts
(Figure 1, a).6a Recently, a silver(I)-catalyzed reaction has
become an important method in organic synthesis in view
of the potential dual functions of Ag(I) as both a Lewis acid11
and a transition metal.12 Herein, we wish to report a highly
R-regioselective reaction of indoles with Baylis-Hillman
acetates derived from cyclic enones catalyzed by AgOTf for
direct nucleophilic substitution.
Initially, the reaction of indole 1 with 2-(acetoxyphenyl-
methyl)-cyclohex-2-enone 2a was investigated by using
palladium catalysts (Scheme 1, Table 1). Under the catalysis
Scheme 1
(3) (a) Basavaiah, D.; Satyanarayana, T. Org. Lett. 2001, 3, 3619. (b)
Kabalka, G. W.; Venkataiah, B.; Dong, G. Org. Lett. 2003, 5, 3803. (c)
Yadav, J. S.; Gupta, M. K.; Pandey, S. K.; Reddy, B. V. S.; Sarma, A. V.
S. Tetrahedron Lett. 2005, 46, 2761. (d) Nag, S.; Pathak, R.; Kumar, M.;
Shukla, P. K.; Batra, S. Bioorg. Med. Chem. Lett. 2006, 16, 3824. (e)
Basavaiah, D.; Pandiaraju, S.; Padmaja, K. Synlett 1996, 393. (f) Kabalka,
G. W.; Venkataiah, B.; Dong, G. Org. Lett. 2003, 5, 3803.
of Pd(acac)2/PPh3,8a the reaction of N-methylindole (1c)
provided substituted product 2-[(1-methylindolyl)phenyl-
(4) DABCO as promoter: (a) Singh, V.; Yadav, G. P.; Maulik, P. R.;
Batra, S. Tetrahedron 2006, 62, 8731. (b) Lee, K. Y.; Gowrisankar, S.;
Lee, Y. J.; Kim, J. N. Tetrahedron 2006, 62, 8798. (c) Li, J.; Wang, X.;
Zhang, Y. Tetrahedron Lett. 2005, 46, 5233. (d) Du, Y.; Han, X.; Lu, X.
Tetrahedron Lett. 2004, 45, 4967. (e) Chung, Y. M.; Gong, J. H.; Kim, T.
H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023.
Table 1. Nucleophilic Substitution of B-H Acetate 2a with
1aa
(5) Phosphine catalysis: (a) Cho, C-W.; Krische, M. J. Angew. Chem.,
Int. Ed. 2004, 43, 6689. (b) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org.
Lett. 2004, 6, 1337.
(6) (a) Kabalka, G. W.; Dong, G.; Venkataiah, B.; Chen, C. J. Org. Chem.
2005, 70, 9207. (b) Trost, B. M.; Tsui, H. C.; Toste, F. D. J. Am. Chem.
Soc. 2000, 122, 3534. (c) Roy, O.; Riahi, A.; Henin, F.; Muzart, J.
Tetrahedron 2000, 56, 8133. (d) Nemot, T.; Fukuyama, T.; Yamamoto, E.;
Tamura, S.; Fukuda, T.; Matsumoto, T.; Akimoto, Y.; Hamada, Y. Org.
Lett. 2007, 9, 927.
(7) (a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
(b) Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-
Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424. (c) Kimura, M.; Futamata,
M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (d) Bandini,
M.; Melloni, A.; Umani-Ronchi, A. Org. Lett. 2004, 6, 3199. (e) Trost, B.
M.; Krische, M. J.; Berl, V.; Grenzer, E. M. Org. Lett. 2002, 4, 2005. (f)
Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793.
(g) Malkov, A. V.; Davis, S. L.; Baxendale, I. R.; Mitchell, W. L.; Kocovsky,
P. J. Org. Chem. 1999, 64, 2751-2764.
(8) (a) Ma, S.; Yu, S.; Guo, H. J. Org. Chem. 2006, 71, 9865. (b) Ma,
S.-M.; Yu, S.-C. Tetrahedron Lett. 2004, 45, 8419. (c) Ma, S.-M.; Yu, S.-
C.; Peng, Z.-H. Org. Biomol. Chem. 2005, 3, 1933. (d) Ma, S.-M.; Zhang,
J. Tetrahedron 2003, 59, 6273. (e) Ma, S.; Zhang, J. Tetrahedron Lett. 2002,
43, 3435.
(9) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V.;
Prabhakar, A.; Jagadeesh, B. Tetrahedron Lett. 2005, 46, 639.
(10) (a) Narender, P.; Gangadasu, B.; Ravinder, M.; Srinivas, U.; Swamy,
G. Y. S. K.; Ravikumar, K.; Rao, V. J. Tetrahedron 2006, 5, 954. (b)
Porzelle, A.; Williams, C. M.; Schwartz, B. D.; Gentle, I. R. Synlett 2005,
2923. (c) Luo, S.; Mi, X. L.; Xu, H.; Wang, P. G.; Cheng, J. P. J. Org.
Chem. 2004, 69, 8413. (d) Luo, S. Z.; Wang, P. G.; Cheng, J. P. J. Org.
Chem. 2004, 69, 555. (e) Basavaiah, D.; Rao, A. J. Chem. Commun. 2003,
604. (f) Basavaiah, D.; Reddy, R. J.; Rao, J. S. Tetrahedron Lett. 2006, 47,
73. (g) Basavaiah, D.; Rao, J. S.; Reddy, R. J. J. Org. Chem. 2004, 69,
7379. (h) Lee, K. Y.; Gowrisankar, S.; Lee, Y. J.; Kim, J. N. Tetrahedron
Lett. 2005, 46, 5387.
entry catalyst
solvent
CH2Cl2
temp time (h) yield (%)b
1
2
3c
4
5
6
7
8
9
PdCl2
reflux
reflux
80 °C
24
24
1
NR
NR
65/30d
Pd(OAc)2 CH2Cl2
Pd(acac)2 HOAc
DABCOe THF/H2O (4:1) rt
FeCl3
Cu (OTf)2 CH2Cl2
Ag OTf
Ag OTf
-
24
48
24
48
6
NR
54
48
80
80
CH2Cl2
reflux
reflux
rt
reflux
reflux
CH2Cl2
CH2Cl2
CH2Cl2
24
NR
a
1a/2a ) 1:1. Catalyst: 10 mol %. b Isolated yield. c N-Methyl indole
d
(1c) was used, with 10 mol % of Pd (acac)2 and 20 mol % of PPh3. 3c/
2a′.
e
DABCO (1.1 equiv).
methyl]-cyclohex-2-enone 3c in 65% yield, together with an
isomerized elimination product of 2a, 2-benzylidene-cyclo-
hex-3-enone 2a′ in 30% yield (entry 3). When DABCO was
(11) For selected examples, see: (a) Momiyama, N.; Yamamoto, H. J.
Am. Chem. Soc. 2004, 126, 5360. (b) Josephohn, N. S.; Snapper, M. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734. (c) Wei, C.; Li, Z.; Li,
C.-J. Synlett 2004, 1472. (d) Josephohn, N. S.; Snapper, M. L.; Hoveyda,
A. H. J. Am. Chem. Soc. 2003, 125, 4018. (e) Longmire, J. M.; Wang, B.;
Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (f) Yanagisawa, A.;
Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118,
4723. (g) Yanagisawa, A. In Lewis acids in Organic Synthesis; Yamamoto,
H., Ed.; Wiley-VCH: Weinheim, Gemany, 2000; Vol. 2, Chapter 13.
(12) For examples, see: (a) Bates, R. W.; Satcharoen, V. Chem. Soc.
ReV. 2002, 31, 12. (b) Dias, H. V. R.; Browning, R. G.; Polach, S. A.;
Diyabalanage, H. V. K.; Lovely, C. J. J. Am. Chem. Soc. 2003, 125, 9270.
(c) Cui, Y.; He, C. Angew. Chem., Int. Ed. 2004, 43, 4210. (d) Yao, X.; Li,
C.-J. J. Org. Chem. 2005, 70, 5752. (e) Youn, S. W.; Eom, J. I. J. Org.
Chem. 2006, 71, 6705.
2526
Org. Lett., Vol. 9, No. 13, 2007