Modular Aromatics That Form Molecular Organogels
FIGURE 1. Chemical structures of 1-3, and energy minimized (molecular mechanics, MM2) longitudinal (a) and lateral (b) assembly of 1.
ciples of self-assembly and molecular engineering,4 can trans-
form the contemporary design of organogels from a somewhat
serendipitous approach to a more rational one. In that vein, the
study presented herein addresses both the structural and
electronic requirements needed for small functional compounds
to effectively assemble5 and trigger the microscopic phase
separation needed to gel organic solvents, including the role of
solvent in such processes.6
Flory, early on,7 referred to gels as materials with continuous
structure and macroscopic appearance persistent on the time
scale of our day-to-day activities, which are viscoelastic and
solid-like below a certain stress limit. For the physical orga-
nogels of interest in this study, LMWGs are known to assemble
into fibrillar 3D networks that in supersaturated solutions (sols)
cause a phase transition to macroscopically immobilize the
solvent molecules via surface tension and capillary forces.1b
Such solid-like materials (gels) are composed largely of the
liquid phase (typically g98%) and a rather small quantity of
the gelator.
(1) (a) DeRossi, D.; Kajiwara, K.; Osada, Y.; Yamauchi, A., Eds. Polymer
Gels. Fundamentals and Biomedical Applications; Plenum: New York,
1991. (b) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133. (c) Osada,
Y.; Khokhlov, A. R., Eds. Polymer Gels and Networks; Marcel Dekker
Inc.: New York, 2002. (d) Mallia, V. A.; Tamaoki, N. Chem. Soc. ReV.
2004, 33, 76. (e) Jung, J. H.; Shinkai, S. Top. Curr. Chem. 2005, 248, 223.
(f) Carretti, E.; Dei, L.; Weiss, R. G. Soft Matter 2005, 1, 17-22. (g) Wang,
R-Y.; Liu, X-Y.; Narayanan, J.; Xiong, J-Y.; Li, J-L. J. Phys. Chem. B
2006, 110, 25797. (h) Weiss, R. G.; Terech P., Eds. Molecular Gels:
Materials with Self-Assembled Fibrillar Networks; Springer: Dordrecht,
The Netherlands, 2006.
(2) (a) Van, E. J. H.; Feringa, B. L. Angew. Chem., Int. Ed. 2000, 39,
2263. (b) Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.;
Hanabusa, K. Org. Biomol. Chem. 2004, 2, 1155. (c) Estroff, L. A.;
Hamilton, A. D. Chem. ReV. 2004, 104, 1201. (d) de Loos, M.; Feringa, B.
L.; van Esch, J. H. Eur. J. Org. Chem. 2005, 17, 3615. (e) Sangeetha, N.
M.; Maitra, U. Chem. Soc. ReV. 2005, 34, 821. (f) Hirst, A. R.; Smith, D.
K.; Harrington, J. P. Chem. Eur. J. 2005, 11, 6552. (g) Li, J. L.; Liu, X.
Y.; Strom, C. S.; Ying, X. J. AdV. Mat. 2006, 18, 2574. (h) Escuder, B.;
LLusar, M.; Miravet, J. F. J. Org. Chem. 2006, 71, 7747. (i) George, M.;
Weiss, R. G. Acc. Chem. Res. 2006, 39, 489. (j) Ballabh, A.; Trivedi, D.
R.; Dastidar, P. Chem. Mater. 2006, 18, 3795. (k) Weng, W.; Beck, J. B.;
Jamieson, A. M.; Rowan, S. J. J. Am. Chem. Soc. 2006, 128, 11663. (l)
Rieth, S.; Baddeley, C.; Badjic´, J. D. Soft Matter 2007, 1, 137.
(3) (a) Mieden-Gundert, G.; Klein, L.; Fischer, M.; Vogtle, F.; Heuze,
K.; Pozzo, J-L.; Vallier, M.; Fages, F. Angew. Chem., Int. Ed. 2001, 40,
3164. (b) Malik, S.; Maji, S. K.; Banerjee, A.; Nandi, A. K. J. Chem. Soc.,
Perkin Trans. 2 2002, 6, 1177. (c) Potluri, V. K.; Hamilton, A. D. J.
Supramol. Chem. 2003, 2, 321. (d) Ishi-i, T.; Shinkai, S. Top. Curr. Chem.
2005, 258, 119. (e) Serpe, M. J.; Craig, S. L. Langmuir 2007, 23, 1626.
(4) (a) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35,
1155. (b) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418. (c)
Ikkala, O.; ten Brinke, G. Chem. Commun. 2004, 19, 2131. (d) Lehn, J-M.
In Supramolecular Polymers; Ciferri, A., Ed.; CRC Press LLC: Boca Raton,
FL, 2005; p 3. (e) Fialkowski, M.; Bishop, K. J. M.; Klajn, R.; Smoukov,
S. K.; Campbell, C. J.; Grzybowski, B. A. J. Phys. Chem. B 2006, 110,
2482.
It has been recognized that anisotropic intermolecular interac-
tions are a prerequisite for enhancing the linear aggregation of
LMWGs while attenuating the growth along other dimensions,
which allows for the gel formation.8 On the basis of this
principle, we have designed a series of divalent urea-based
aromatics (Figure 1), all capable of interacting via hydrogen
bonding, and examined their propensity to gel organic solvents.
These molecules were chosen so as to explore the impact of
systematic structural and electronic perturbations on their
propensity to organize and form gels. Intriguingly, we discov-
ered that a delicate balance between both the molecular structure
(5) (a) Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1949. (b) van Esch, J.; Kellogg, R. M.; Feringa, B.
L. Tetrahedron Lett. 1997, 38, 281. (c) Schoonbeek, F. S.; Van Esch, J.
H.; Wegewijs, B.; Rep, D. B. A.; De Haas, M. P.; Klapwijk, T. M.; Kellogg,
R. M.; Feringa, B. L. Angew. Chem., Int. Ed. 1999, 38, 1393. (d) George,
M.; Snyder, S. L.; Terech, P.; Glinka, C. J.; Weiss, R. G. J. Am. Chem.
Soc. 2003, 125, 10275. (e) Liu, Y.; Li, Y.; Jiang, L.; Gan, H.; Liu, H.; Li,
Y.; Zhuang, J.; Lu, F.; Zhu, D. J. Org. Chem. 2004, 69, 9049. (f) Nie, X.;
Wang, G. J. Org. Chem. 2006, 71, 4734. (g) Chow, H-F.; Zhang, J.; Lo,
C-M.; Cheung, S-Y.; Wong, K-W. Tetrahedron 2006, 63, 363.
(6) (a) Zhu, G.; Dordick, J. S. Chem. Mater. 2006, 18, 5988. (b) Pinault,
T.; Isare, B.; Bouteiller, L. ChemPhysChem 2006, 7, 816.
(7) (a) Flory, P. J. J. Phys. Chem. 1942, 46, 132. (b) Flory, P. J. Faraday
Discuss. Chem. Soc. 1974, 57, 7.
J. Org. Chem, Vol. 72, No. 19, 2007 7271