4380
X. Hu et al. / Tetrahedron Letters 50 (2009) 4378–4380
Br
OTMS
Br
∗
N
+
CF3
B
R
N
MeO
F3C
CF3
∗
H
R
O
CH3
Br
H3C Si
N
N
CF3
CH3
5
B
OH
* CF3
O
O
a) 5 mo l% 5, 50 mol % NaH
isopropyl ether, -20 ºC
R
+ TMSCF3
.
b) TBAF H2O, THF, rt
63% ee, 90% yield
B
Br
CH3
CH3
Scheme 1. Control experiment.
H3C Si
F3C
N
A
)
(
O
CF3
CH3
R
O
R
for financial support. We also thank Sichuan University Analytical
and Testing Center for NMR analysis.
N
H3C
Si
CH3
Br
B
(B)
References and notes
Figure 2. Proposed catalytic cycle.
1. (a) Meissner, R. S.; Perkins, J. J.; Kim, Y.; Hanney, B.; McVean, C. A. WO20070
16358, 2007.; (b) Powers, J. P.; Degraffenreid, M. R.; He, X.; Julian, L.; McMinn,
D. L.; Sun, D.; Rew, Y.; Yan, X. WO2006138508, 2006.; (c) Degraffenreid, M. R.;
He, X.; Powers, J. P.; Sun, D.; Yan, X. WO2005063247, 2005.; (d) Bilder, D. M.
WO2002078628, 2002.; (e) Obach, R.S.; Scully, D. A. WO2000071538, 2000.; (f)
Satake, K. WO 9925714, 1999; (g) Young, S. D.; Britcher, S. F.; Payne, L. S.; Tran,
L. O.; Lumma, W. C., Jr. WO9520389, 1995.
2. For a review see: (a) Farnham, W. B. Chem. Rev. 1996, 96, 1633; (b) Prakash, G.
K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757; (c)Morden Fluoroorganic Chemistry
Synthesis, Reactivity, Applications; Kirsch, P., Ed.; Wiley-VCH Verlag GmbH &
Co.: Weinheim, Germany, 2004; (d) Billard, T.; Langlois, B. R. Eur. J. Org. Chem.
2007, 6, 891; (e) Shibata, N.; Mizuta, S.; Kawai, H. Tetrahedron: Asymmetry
2008, 19, 2633.
3. (a) Kitazume, T.; Ishikawa, N. Chem. Lett. 1982, 1453; (b) Billard, T.; Bruns, S.;
Langlois, B. R. Org. Lett. 2000, 2, 2101; (c) Aït-Mohand, S.; Takechi, N.;
Médebielle, M.; Dolbier, R., Jr. Org. Lett. 2001, 3, 4271; (d) Billard, T.; Langlois, B.
R.; Blond, G. Eur. J. Org. Chem. 2001, 8, 1467; (e) Prakash, G. K. S.; Hu, J. B.; Olah,
G. A. Org. Lett. 2003, 5, 3253; (f) Yamauchi, Y.; Kawate, T.; Katagiri, T.; Uneyama,
K. Tetrahedron 2003, 59, 9839; (g) Martina, S. L. X.; Jagt, R. B. C.; De Vries, J. G.;
Feringa, B. L.; Minnaard, A. J. Chem. Commun. 2006, 4093; (h) Wang, X. J.; Zhao,
Y.; Liu, J. T. Org. Lett. 2007, 9, 1343.
4. Rupport, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.
5. (a) Prakash, G. K. S.; Krishnamurthi, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111,
393; (b) Stahly, G. P.; Bell, D. R. J. Org. Chem. 1989, 54, 2873; (c) Singh, R. P.;
Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64, 2579; (d) Prakash, G. K. S.;
Mandal, M.; Panja, C.; Mathew, T.; Olah, G. A. J. Fluorine Chem. 2003, 123, 61; (e)
Song, J. J.; Tan, Z. L.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. Org.
Lett. 2005, 7, 2193; (f) Prakash, G. K. S.; Panja, C.; Vaghoo, H.; Surampudi, V.;
Kultyshev, R.; Mandal, M.; Rasul, G.; Mathew, T.; Olah, G. A. J. Org. Chem. 2006,
71, 6806; (g) Pedrosa, R.; Sayalero, S.; Vicente, M.; Maestro, A. J. Org. Chem.
2006, 71, 2177; (h) Demir, A. S.; Eymur, S. J. Org. Chem. 2007, 72, 8527.
6. (a) Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett. 1994, 35, 3137; (b) Iseki,
K.; Kobayashi, Y. Rev. Heteroat. Chem. 1995, 12, 211.
occurred, furnishing
(Table 3, entry 11).
a-trifluoromethyl allylic alcohol 2k in 59% ee
As depicted in Figure 2, a catalytic cycle was proposed to eluci-
date the reaction mechanism. First, ketone was effectively acti-
vated by the chiral N+ cation in quaternary ammonium salt to
form the intermediate A.14 Meanwhile, discrimination of the enan-
tiotopic faces of ketones happened in this step. Second, the nucle-
ophilic reagent TMSCF3 was activated by Lewis base to generate
the intermediate B.15 Then, the activated carbonyl group was easily
attacked by CF3À, after which, trimethylsilylation of the resulted
alkoxide quickly underwent to furnish the desired product and
regenerate the catalyst.
It should be noted that there were two possible species that
might act as Lewis base to activate TMSCF3. One was HÀ from
NaH. The other was ROÀ which might be produced from the depro-
tonation of hydroxy on quaternary ammonium salt by NaH. How-
ever, the control experiment showed that when the hydroxyl in 3b
was methylated, the reaction still proceeded smoothly and enanti-
oselectively, affording the product in 63% ee and 90% yield (Scheme
1). Additionally, in the absence of NaH, 5 could not catalyze the
reaction. Based on these observations, it was reasonable to deduce
that the hydride ion in sodium hydride might serve as the efficient
Lewis base to activate TMSCF3.
In conclusion, the combined use of cinchonine-derived quater-
nary ammonium salt 3b and NaH was established as the effective
and FÀ free catalytic system for the catalytic asymmetric trifluo-
romethylation of ketones. Adducts bearing electron-donating and
electron-withdrawing groups could be obtained in moderate to
good ee (up to 82%) and yield (up to 98%). Moreover, a plausible
catalytic cycle was proposed to explain the mechanism.
7. Kuroki, Y.; Iseki, K. Tetrahedron Lett. 1999, 40, 8231.
8. Caron, S.; Do, N. M.; Arpin, P.; Larivée, A. Synthesis 2003, 11, 1693.
9. (a) Shibata, N.; Toru, T. JP 2005306769, 2005.; (b) Mizuta, S.; Shibata, N.;
Hibino, M.; Nagano, S.; Nakamura, S.; Toru, T. Tetrahedron 2007, 63, 8521; (c)
Mizuta, S.; Shibata, N.; Akiti, S.; Fujimoto, H.; Nakamura, S.; Toru, T. Org. Lett.
2007, 9, 3707.
10. Prakash, G. K. S.; Hu, J. B. In Fluorine-Containing Synthons; Soloshonok, V. A., Ed.;
ACS Symposium Series 911; American Chemical Society: Washington, 2005; pp
16–56.
11. Nagao, H.; Yamane, Y.; Mukaiyama, T. Chem. Lett. 2007, 36, 666.
12. Zhao, H. T.; Qin, B.; Liu, X. H.; Feng, X. M. Tetrahedron 2007, 63, 6822.
13. The reaction could not proceed smoothly in the presence of 5 mol % quaternary
ammonium 3a or 3b independently.
14. Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222.
15. Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.
Acknowledgments
We appreciate the National Natural Science Foundation of China
(No. 20732003) and the Ministry of Education (No.20070610019)