ORGANIC
LETTERS
Intermolecular Energy Transfer from Tb3þ
to Eu3þ in Aqueous Aggregates and on the
Surface of Human Cells
2011
Vol. 13, No. 11
2802–2805
Minhee Lee, Matthew S. Tremblay, Steffen Jockusch, Nicholas J. Turro,
and Dalibor Sames*
Department of Chemistry, Columbia University, 3000 Broadway, New York,
New York 10027, United States
Received February 9, 2011
ABSTRACT
Efficient intermolecular energy transfer from carbostyril 124-sensitized Tb3þ to Eu3þ in aqueous aggregates is reported. This energy transfer was
also recapitulated on the cell surface of a human kidney cell line (HEK-293T) and imaged by fluorescence microscopy as an example for the
applicability of this energy transfer probe for imaging in biological systems.
Fluorescence resonance energy transfer (FRET) and
luminescence resonance energy transfer (LRET) are power-
ful tools for studying molecular interactions in solution and
in a cellular context.1 Extensive research has been carried out
using resonance energy transfer between various energy
transfer partners, such as small organic fluorophores,2
fluorescent proteins,3 quantum dots,4 and fluorescent/lumi-
nescent metal ions.5,6 In particular, long-lived luminescent
lanthanide ions as energy transfer donors6 have been shown
to offer many advantages, since light output can be measured
in a time domain that is essentially background-free.7 The use
of a second lanthanide ion as an energy transfer acceptor can
make the resonance energy transfer measurement more
sensitive because the emissions from a donor and an acceptor
are readily resolvable as sharply spiked peaks. Energy trans-
fer between two lanthanide ions in heterodinuclear com-
plexes and mixed lanthanide systems has long been known in
(1) For general reviews, see: (a) Piston, D. W.; Kremers, G.-J. Trends
Biochem. Sci. 2007, 32, 407–414. (b) Vogel, S. S.; Thaler, C.; Koushik,
S. V. Sci. STKE 2006, 331, re2. (c) Selvin, P. R. Nat. Struct. Biol. 2000, 7,
730–734. (d) Heyduk, T. Curr. Opin. Biotechnol. 2002, 13, 292–296.
(2) (a) Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.;
Burres, N.; Feng, L.; Whitney, M.; Roemer, K.; Tsien, R. Y. Science
1998, 279, 84–88. (b) Sako, Y.; Minoguchi, S.; Yanagida, T. Nat. Cell
Biol. 2000, 2, 168–172.
(7) For general reviews of luminescent lanthanide ions, see: (a)
(3) Nguyen, A. W.; Daugherty, P. S. Nat. Biotechnol. 2005, 23,
355–360.
(4) (a) Patolsky, F.; Gill, R.; Weizmann, Y.; Mokari, T.; Banin, U.;
Willner, I. J. Am. Chem. Soc. 2003, 125, 13918–13919. (b) Shi, L.; Paoli,
V. D.; Rosenzweig, N.; Rosenzweig, Z. J. Am. Chem. Soc. 2006, 128,
10378–10379.
(5) (a) Youn, H. J.; Terpetschnig, E.; Szmacinski, H.; Lakowicz, J. R.
Anal. Biochem. 1995, 232, 24–30. (b) Kwon, T.-H.; Kwon, J.; Hong, J.-I.
J. Am. Chem. Soc. 2008, 130, 3726–3727.
(6) (a) Selvin, P. R. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 275–
302. (b) Cha, A.; Snyder, G. E.; Selvin, P. R.; Bezanilla, F. Nature 1999,
402, 809–813. (c) Allen, K. N.; Imperiali, B. Curr. Opin. Chem. Biol.
2010, 14, 1–8.
€
Bunzli, J.-C. G. Chem. Rev. 2010, 110, 2729ꢀ2755. (b) Parker, D.;
Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J. A. K. Chem.
Rev. 2002, 102, 1977–2010. (c) Gunnlaugsson, T.; Leonard, J. P. Chem.
Commun. 2005, 25, 3114–3131.
(8) (a) Lis, S.; Elbanowski, M.; Ma-kowska, B.; Hnatejko, Z. J.
Photochem. Photobiol. A: Chem. 2002, 150, 233–247. (b) Piguet, C.;
€
Bunzli, J.-C. G. Chem. Soc. Rev. 1999, 28, 347–358. (c) Faulkner, S.;
Pope, S. J. A. J. Am. Chem. Soc. 2003, 125, 10526–10527. (d) Brittain,
H. G. Inorg. Chem. 1978, 17, 2762–2766. (e) Chrysochoos, J. J. Lumin.
1974, 9, 79–93.
(9) (a) Santos, A. M.; Marques, F. M. B.; Carlos, L. D.; Rocha, J. J.
Mater. Chem. 2006, 16, 3139–3144. (b) Zhang, T.; Xu, Z.; Qian, L.;
Teng, F.; Xu, X. R. J. Appl. Phys. 2005, 98, 3503–3507.
r
10.1021/ol200328p
Published on Web 05/12/2011
2011 American Chemical Society