Communications
[8] For reviews of double Michael addition reactions, see: a) R. B.
Grossman, Synlett 2001, 13; b) M. Ihara, K. Fukumoto, Angew.
Chem. 1993, 105, 1059; Angew. Chem. Int. Ed. Engl. 1993, 32,
1010.
Keywords: aldehydes · cyclopentanes · domino reactions ·
Michael addition · organocatalysis
.
[9] For selected examples of double Michael addition reactions, see:
a) H. Yun, A. Gagnon, S. J. Danishefsky, Tetrahedron Lett. 2006,
47, 5311; b) A. Barco, N. Baricordi, S. Benetti, C. De Risi, G. P.
Pollini, Tetrahedron Lett. 2006, 47, 8087; c) Z. Hua, W. Yu, M. Su,
Z. Jin, Org. Lett. 2005, 7, 1939; d) B. W. Greatrex, M. C. Kimber,
D. K. Taylor, E. R. T. Tiekink, J. Org. Chem. 2003, 68, 4239;
e) D. S. Holeman, R. M. Rasne, R. B. Grossman, J. Org. Chem.
2002, 67, 3149; f) P. M. Brown, N. Kappel, P. J. Murphy,
Tetrahedron Lett. 2002, 43, 8707; g) D. J. Dixon, S. V. Ley, F.
Rodriguez, Angew. Chem. 2001, 113, 4899; Angew. Chem. Int.
Ed. 2001, 40, 4763; h) L. A. Paquette, J. Tae, M. P. Arrington,
A. H. Sadoun, J. Am. Chem. Soc. 2000, 122, 2742; i) M. Ihara, M.
Suzuki, K. Fukumoto, C. Kabuto, J. Am. Chem. Soc. 1990, 112,
1164.
[10] Recently a thiourea was synthesized by using a hydrogen-
bonding-mediated double Michael reaction, and although it is
claimed to be a cascade process, the addition of a base (1,1,3,3-
tetramethylguanidine or KOH) is essential for the second
Michael reaction to occur; see: Y. Hoashi, T. Yabuta, P. Yuan,
H. Miyabe, Y. Takemoto, Tetrahedron 2006, 62, 365.
[11] For reviews of the synthesis and bioactivities of cyclopentanes,
see: a) F. C. Biaggio, A. R. Rufino, M. H. Zaim, C. Y. H. Zaim,
M. A. Bueno, A. Rodrigues, Curr. Org. Chem. 2005, 9, 419; b) G.
Helmchen, M. Ernst, G. Paradies, Pure Appl. Chem. 2004, 76,
495; c) L. F. Silva, Tetrahedron 2002, 58, 9137; d) M. Lautens, W.
Klute, W. Tam, Chem. Rev. 1996, 96, 49; e) C. E. Masse, J. S.
Panek, Chem. Rev. 1995, 95, 1293; f) T. Hudlicky, J. D. Price,
Chem. Rev. 1989, 89, 1467.
[12] For a review of reactions catalyzed by chiral pyrrolinol ethers,
see: C. Palomo, A. Mielgo, Angew. Chem. 2006, 118, 8042;
Angew. Chem. Int. Ed. 2006, 45, 7876.
[13] For leading studies of reactions catalyzed by chiral pyrrolinol
ethers, see: a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A.
Jørgensen, Angew. Chem. 2005, 117, 804; Angew. Chem. Int. Ed.
2005, 44, 794; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji,
Angew. Chem. 2005, 117, 4284; Angew. Chem. Int. Ed. 2005, 44,
4212; c) Y.-G. Chi, S. H. Gellman, J. Am. Chem. Soc. 2006, 128,
6804.
[1] For recent reviews of cascade reactions, see: a) K. C. Nicolaou,
D. J. Edmonds, P. G. Bulger, Angew. Chem. 2006, 118, 7292;
Angew. Chem. Int. Ed. 2006, 45, 7134; b) H. Guo, J. Ma, Angew.
Chem. 2006, 118, 362; Angew. Chem. Int. Ed. 2006, 45, 354; c) H.
Pellissier, Tetrahedron 2006, 62, 2143; d) L. F. Tietze, N. Rack-
elmann, Pure Appl. Chem. 2004, 76, 1967.
[2] A. Berkessel, H. Groger, Asymmetric Organocatalysis-From
Biomimetic Concepts to Applications in Asymmetric Synthesis,
Wiley-VCH, Weinheim, 2005.
[3] For recent reviews of organocatalysis, see: a) P. I. Dalko, L.
Moisan, Angew. Chem. 2004, 116, 5248; Angew. Chem. Int. Ed.
2004, 43, 5138; b) Special issue on asymmetric organocatalysis:
Acc. Chem. Res. 2004, 37, 487.
[4] For a review of organocatalytic cascade reactions, see: D.
Enders, C. Grondal, M. R. M. Hüttl, Angew. Chem. 2007, 119,
1590; Angew. Chem. Int. Ed. 2007, 46, 1570.
[5] For selected examples of organocatalytic cascade reactions, see:
a) D. Enders, M. R. M. Hüttl, J. Runsink, G. Raabe, B. Wendt,
Angew. Chem. 2007, 119, 471; Angew. Chem. Int. Ed. 2007, 46,
467; b) A. Carlone, S. Cabrera, M. Marigo, K. A. Jørgensen,
Angew. Chem. 2007, 119, 1119; Angew. Chem. Int. Ed. 2007, 46,
1101; c) B. Wang, F. Wu, Y. Wang, X. Liu, L. Deng, J. Am. Chem.
Soc. 2007, 129, 768; d) L.-S. Zu, J. Wang, H. Li, H.-X. Xie, W.
Jiang, W. Wang, J. Am. Chem. Soc. 2007, 129, 1036; e) D. Enders,
M. R. M. Hüttl, C. Grondal, G. Raabe, Nature 2006, 441, 861;
f) S. Brandau, E. Maerten, K. A. Jørgensen, J. Am. Chem. Soc.
2006, 128, 14986; g) Y. Huang, A. M. Walji, C. H. Larsen,
D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 15051; h) J. W.
Yang, M. T. H. Fonseca, B. List, J. Am. Chem. Soc. 2005, 127,
15036; i) Y. Yamamoto, N. Momiyama, H. Yamamoto, J. Am.
Chem. Soc. 2004, 126, 5962; j) D. B. Ramachary, N. S. Chowdari,
C. F. Barbas III, Angew. Chem. 2003, 115, 4365; Angew. Chem.
Int. Ed. 2003, 42, 4233; k) T. Dudding, A. M. Hafez, A. E. Taggi,
T. R. Wagerle, T. Lectka, Org. Lett. 2002, 4, 387.
[6] a) W. Wang, H. Li, J. Wang, L.-S. Zu, J. Am. Chem. Soc. 2006,
128, 10354; b) H. Li, J. Wang, T. E-Nunu, L.-S. Zu, W. Jiang, S.-
H. Wei, W. Wang, Chem. Commun. 2007, 507; c) H. Li, J. Wang,
H.-X. Xie, L.-S. Zu, W. Jiang, E. N. Duesler, W. Wang, Org. Lett.
2007, 9, 965.
[7] For Michael/aldol/dehydration reactions that have also been
reported, see: a) R. Rios, H. Sunden, I. Ibrahem, G.-L. Zhao, L.
Eriksson, A. Córdova, Tetrahedron Lett. 2006, 47, 8547; b) H.
Sunden, I. Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Chem.
Eur. J. 2007, 13, 574.
[14] The structure of the compound derived from 3j was determined
by X-ray analysis. CCDC-635261 contains the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data
3734
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3732 –3734