558
D. Kaminskyy et al. / Tetrahedron Letters 53 (2012) 557–559
Method a
O
O
H
OH
ii
i
R3
N
S
S
SH
1
2
1
2
3
3
a
R
R ; R or R +R
H; Ph
R
R
O
2a-e
1a-e
R
4-Cl-C6H4
Me
O
b
c
4-Cl-C6H4
H; 4-Me2N-C6H4 Cl
N
R1
R3
4-MeO-C6H4
4-MeO-C6H4
4-Me2N-C6H4
H; Ph
(CH2)5
H; Ph
Me
Cl
d
e
S
R2
Method b
Me
R
3a-g
f
Ph-CH=CH
2-HO-C6H4
H; Ph
Me
Cl
O
g
(CH2)5
OH
SH
N
R1
ii
iii
S
R2
4a-c
Scheme 2. Synthesis of 5-ylidene-2,3-disubstituted-4-thiazolidinones 3. Reagents, conditions and yields: (i) 1 (1.0 equiv), NaOH (5.0 equiv) 30% aq solution, reflux, 0.5 h;
conc. HCl (5.0 equiv) solution, 89–95%; (ii) 2 or thioglycolic acid (1.0 equiv), appropriate amine (0.5 equiv), appropriate aldehyde or cyclohexanone (0.5 equiv), benzene,
reflux, 24 h, 56–78% (compounds 3), 60–71% (compounds 4); (iii) 4 (1.0 equiv), appropriate aldehyde (1.1 equiv), KOt-Bu (1.5 equiv), i-PrOH, reflux, 3 h, 57–78%.
12. Shaker, R. M. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 149, 7–14.
13. Smith, R. L.; Lee, T.; Gould, N. P.; Cragoe, E. J. J. Med. Chem. 1977, 20, 1292–1299.
14. Dandia, A.; Singh, R.; Khaturia, S.; Mérienne, C.; Morgant, G.; Loupy, A. Bioorg.
thiazolidinones 3a–c,e,f showed a singlet at ꢀ4.70–6.85 ppm due
to a CH group. The chemical shift of the methylidene group of
the 5-arylidene derivatives was in the range 7.40–8.00 ppm. Sig-
nals at ꢀ6.0 ppm representative of E-isomers were not observed.
This indicated formation of Z-isomers, as in the case of rhodanine
or 2,4-thiazolidinone derivatives.1,23,24 The signals of the aromatic
protons and cyclohexyl fragment were at expected values.
Newly synthesized compounds 3a–c, 3e and 3g were selected
by the National Cancer Institute (NCI) Developmental Therapeutic
ing to investigate their anticancer activity. Anticancer assays were
performed according to the US NCI protocol.25–27 The tested com-
pounds (concentration 10À5 M) showed insignificant anticancer
activity—having weak average values (based on 60 cancer cell
lines) of anticancer activity, however, they possessed specific influ-
ence on some cancer cell lines.28 The leukemia panel was the most
sensitive to the tested compounds
Med. Chem. 2006, 14, 2409–2417.
15. Gududuru, V.; Nguyen, V.; Dalton, J. T.; Miller, D. D. Synlett 2004, 2357–2358.
16. Srivastava, T.; Haq, W.; Katti, S. B. Tetrahedron 2002, 58, 7619–7624.
17. Kaminskyy, D.; Zimenkovsky, B.; Lesyk, R. Eur. J. Med. Chem. 2009, 44, 3627–
3636.
18. Brown, F. C.; Jones, R. S.; Kent, M. Can. J. Chem. 1963, 41, 817–820.
19. Dobrina, V. A.; Ioffe, D. V. Pharm. Chem. J. 1978, 11, 817–818.
20. Preparation of 3-substituted-2-mercaptoacrylic acids 2. A 30% aq solution of
NaOH (50 mmol) was added to 5-ylidenerhodanine 1 (10 mmol). The reaction
mixture was refluxed for 30 min and cooled. An equimolar amount of conc. HCl
was added and the mixture was diluted with H2O (150 ml). The product was
filtered and recrystallized from EtOH or EtOH/H2O (1:1).
21. Preparation of 5-ylidene-2,3-disubstituted-4-thiazolidinones 3. Method a: A
mixture of appropriate amine (5 mmol), aldehyde or cyclohexanone (5 mmol)
and 3-substituted-2-mercaptoacrylic acid
2 (10 mmol) in benzene was
refluxed for 24 h using a Dean–Stark apparatus. The reaction mixture was
added to an aq solution of NaHCO3, after cooling. The crude precipitate was
filtered and recrystallized from AcOH. Method b: Preparation of 2,3-
substituted-4-thiazolidinones 4.
A mixture of the appropriate amine
(8 mmol), aldehyde or cyclohexanone (8 mmol) and thioglycolic acid
(16 mmol) in benzene was refluxed for 24 h using a Dean–Stark apparatus.
After cooling, the mixture was added to an aq solution of NaHCO3. The crude
precipitate was filtered and recrystallized from AcOH or EtOH. Preparation of
5-ylidene-2,3-disubstituted-4-thiazolidinones 3. A mixture of appropriate 2,3-
Acknowledgment
We thank Dr. V. L. Narayanan from the Drug Synthesis and
Chemistry Branch, National Cancer Institute, Bethesda, MD, USA,
for in vitro evaluation of anticancer activity.
disubstituted-4-thiazolidinone
4 (5 mmol), aromatic aldehyde (5.5 mmol),
KOt-Bu (7.5 mmol) and i-PrOH (15 ml) was refluxed for 3 h. AcOH (1 ml) was
added after cooling. The product was filtered and recrystallized from AcOH.
22. Spectral and analytical data for compounds 3. 5-(4-Chlorobenzylidene)-2-
phenyl-3-(4-methyphenyl)-4-thiazolidinone (3a). Yield 78% (Method a), 53%
(Method b), mp >230 °C (AcOH). 1H NMR (400 MHz, DMSO-d6): 2.24 (s, 3H,
CH3), 6.79 (s, 1H, 2-H), 7.10 (d, J = 8.2 Hz, 2H, Ar), 7.22–7.31 (m, 5H, Ar), 7.35 (d,
J = 7.35 Hz, 2H, Ar), 7.45 (d, J = 8.5 Hz, 2H, Ar), 7.49 (s, 1H, CH@), 7.55 (d,
J = 8.5 Hz, 2H, Ar). 13C NMR (100 MHz, DMSO-d6): 165.0, 138.9, 136.8, 135.2,
134.1, 133.3, 131.3, 129.8, 129.5, 129.4, 127.6, 127.5, 126.0, 123.6, 63.0, 21.0.
Anal. Calcd for C23H18ClNOS,% C, 70.49; H, 4.63; N, 3.57. Found,%: C, 70.60; H,
4.75; N, 3.90.
References and notes
1. Lesyk, R. B.; Zimenkovsky, B. S. Curr. Org. Chem. 2004, 8, 1547–1577.
2. Prabhakar, Y. S.; Solomon, V. R.; Gupta, M. K.; Katti, S. B. Top. Heterocycl. Chem.
2006, 4, 161–249.
3. Lesyk, R. B.; Zimenkovsky, B. S.; Kaminskyy, D. V.; Kryshchyshyn, A. P.;
Havryluk, D. Ya.; Atamanyuk, D. V.; Subtel’na, I. Yu.; Khyluk, D. V. Biopolym. Cell.
2011, 27, 107–117.
4. Barreca, M. L.; Chimirri, A.; De Luca, L.; Monforte, A. M.; Monforte, P.; Rao, A.;
Zappalà, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Bioorg.
Med. Chem. Lett. 2001, 11, 1793–1796.
5. Barreca, M. L.; Balzarini, J.; Chimirri, A.; De Clercq, E.; De Luca, L.; Höltje, H. D.;
Höltje, M.; Monforte, A.-M.; Monforte, P.; Pannecouque, C.; Rao, A.; Zappalà, M.
J. Med. Chem. 2002, 45, 5410–5413.
5-(4-Chlorobenzylidene)-3-(4-chlorophenyl)-2-(4-dimethylaminophenyl)-4-
thiazolidinone (3b). Yield 56% (Method a), 35% (Method b), mp >230 °C (AcOH).
1H NMR (400 MHz, DMSO-d6): 2.88 (s, 6H, 2 Â CH3), 6.54 (d, J = 8.8 Hz, 2H, Ar),
6.72 (s, 1H, 2-H), 7.15 (d, J = 8.8 Hz, 2H, Ar), 7.31 (d, J = 8.8 Hz, 2H, Ar), 7.41–
7.45 (m, 4H, Ar), 7.47 (s, 1H, CH@), 7.54 (d, J = 8.8 Hz, 2H, Ar). 13C NMR
(100 MHz, DMSO-d6): 164.8, 139.3, 135.4, 133.7, 133.5, 133.3, 131.3, 130.1,
129.4, 129.2, 127.4, 128.5, 128.2, 125.8, 115.0, 62.8, 45.0. Anal. Calcd for
6. Look, G. R.; Schullek, J. R.; Holmes, C. P.; Chinn, J. P.; Gordon, E. M.; Gallop, M. A.
Bioorg. Med. Chem. Lett. 1996, 6, 707–712.
7. Babaoglu, K.; Page, M. A.; Jones, V. C.; McNeil, M. R.; Dong, C.; Naismith, J. H.;
Lee, R. E. Bioorg. Med. Chem. Lett. 2003, 13, 3227–3230.
8. Kavitha, C. V.; Basappa; Nanjunda Swamy, S.; Mantelingu, K.; Doreswamy, S.;
Sridhar, M. A.; Shashidhara Prasad, J.; Kanchugarakoppal Rangappa, S. Bioorg.
Med. Chem. 2006, 14, 2290–2299.
9. Allen, S.; Newhouse, B.; Anderson, A. S.; Fauber, B.; Allen, A.; Chantry, D.;
Eberhard, C.; Odingo, J.; Burges, L. E. Bioorg. Med. Chem. Lett. 2004, 14, 1619–
1624.
C
24H20Cl2N2OS. C, 63.30; H, 4.43; N, 6.15. Found,%: C, 63.50; H, 4.55; N, 6.40.
5-(4-Methoxybenzylidene)-2-phenyl-3-(4-methyphenyl)-4-thiazolidinone
(3c). Yield 71% (Method a), 47% (Method b), mp >230 °C (AcOH). 1H NMR
(400 MHz, DMSO-d6): 2.21 (s, 3H, CH3), 3.79 (s, 3H, OCH3), 6.84 (s, 1H, 2-H),
7.04 (d, J = 8.3 Hz, 2H, Ar), 7.13 (d, J = 7.9 Hz, 2H, Ar), 7.22–7.37 (m, 7H, Ar),
7.51 (s, 1H, CH@), 7.52 (d, J = 8.8 Hz, 2H, Ar), 13C NMR (100 MHz, DMSO-d6):
165.5, 159.86, 139.3, 136.6, 135.4, 131.4, 129.8, 129.4, 129.3, 127.8, 127.4,
126.0, 125.0. 123.6, 115.0, 62.7, 55.8, 21.0. Anal. Calcd for C24H21NO2S. C, 74.39;
H, 5.46, N, 3.61. Found,%: C, 74.55; H, 5.65; N, 3.80.
4-(4-Chlorophenyl)-2-(4-methoxybenzylidene)-1-thia-4-aza-spiro[4.5]decan-
3-one (3d). Yield 71% (Method a), 48% (Method b), mp 194–197 °C (AcOH). 1
H
10. Gududuru, V.; Hurh, E.; Dalton, J. T.; Millera, D. D. Bioorg. Med. Chem. Lett. 2004,
14, 5289–5293.
11. Ottana, R.; Carotti, S.; Maccari, R.; Landini, I.; Chiricosta, G.; Caciagli, B.;
Vigorita, M. G.; Mini, E. Bioorg. Med. Chem. Lett. 2005, 15, 3930–3933.
NMR (400 MHz, DMSO-d6): 0.93–1.00 (m, 1H, cyclohex.), 1.49–1.60 (m, 3H,
cyclohex.), 1.68 (m, 2H, cyclohex.), 1.77 (m, 2H, cyclohex.), 2.00 (m, 2H,
cyclohex.), 3.80 (s, 3H, OCH3), 7.07 (d, J = 8.4 Hz, 2H, Ar), 7.34 (d, J = 8.2 Hz, 2H,