gate other alternatives in performing reactions.5 The use of
solid supports, as either reagents or anchors, contributes
significantly to the progress of practicing green chemistry
because they render the reaction more efficient and envi-
ronmentally friendly. Employing solid-supported reagents,
in particular, generates less organic and aqueous waste as a
result of simplified experimental procedures. Herein, we wish
to report the results of our investigation of the generality
and selectivity in the use of p-TsOH immobilized on either
silica (PTS-Si) or polystyrene (PS)-divinyl benzene (DVB)
polymer (Amberlyst-15) for the deprotection of aromatic
ethers.
Table 1. Deprotection of Vanillin Ethers (1-7) to Vanillin
with Amberlyst-15 and PTS-Sia
Vanillin was chosen as a model and was converted into
the corresponding ethers by using either conventional or
newly reported procedures.6 A total of seven ethers (1-7)
were prepared in 30-97% yields. Table 1 summarizes the
result of our investigation. All ethers of vanillin were found
to be effectively cleaved in 54-95% yields under mild
reaction conditions, employing either Amberlyst-15 or PTS-
Si in toluene at elevated temperatures (e110 °C) with or
without methanol as additive in relatively short reaction times
(e4 h).
In most cases, only substoichiometric amounts of the acids
(0.3-0.6 equiv) were required. Different protecting groups
require slightly different reaction conditions for their removal.
Throughout the reactions, the pH of the reactions as measured
from toluene remained neutral. Decreasing the amount of
acids employed in the reactions resulted in longer reaction
time. In addition, the deprotection reactions employing PTS-
Si were generally faster than those employing Amberlyst-
15 under identical conditions due to the greater surface area
of silica.7
a Unless otherwise noted, all reactions were performed in toluene with
4 equiv of methanol. b Numbers represent the yields of vanillin ethers. c A
) Amberlyst-15; B ) PTS-Si. d The lowest amount of acids required. e The
lowest temperature required. f Isolated yield of vanillin. g Similar results
were obtained in the presence and absence of methanol. h Vanillin was
obtained in 98% yield under similar reaction conditions, using 1.1 equiv of
acid (see ref 5b). i At room temperature, the reaction required 6 d (144 h)
and provided vanillin in 91% yield. j Vanillin was obtained in 91% yield
when 1.1 equiv of the acid was employed at 110 °C for 18 h. k The reaction
proceeded to furnish vanillin in 93% yield at 65 °C for 3 h. l At 110 °C,
the reaction required only 0.25 h to complete, providing vanillin in 90%
yield.
(4) (a) Ballini, R.; Bigi, F.; Carloni, S.; Maggi, R.; Sartori, G. Tetrahedron
Lett. 1997, 38, 4169-4172. (b) Cappa, A.; Marcantoni, E.; Torregiani, E.
J. Org. Chem. 1999, 64, 5696-5699. (c) Monoharan, M.; Lu, Y.; Casper,
M. D.; Just, G. Org. Lett. 2000, 2, 243-246. (d) Papageorgiou, E. A.; Guant,
M. J.; Yu, J.-Q.; Spencer, J. B. Org. Lett. 2000, 2, 1049-1051. (e)
Marcantoni, E.; Massaccesi, M.; Torregiani, E. J. Org. Chem. 2001, 66,
4430-4432. (f) Sabitha, G.; Babu, R. S.; Rajkumar, M.; Srividya, R.; Yadav,
J. S. Org. Lett. 2001, 3, 1149-1151. (g) Markovic´, D.; Vogel, P. Org.
Lett. 2004, 6, 2693-2696. (h) Ritter, T.; Stanek, K.; Larrosa, I.; Carreira,
E. M. Org. Lett. 2004, 6, 1513-1514. (i) Punna, S.; Meunier, S.; Finn, M.
G. Org. Lett. 2004, 6, 2777-2779. (j) Fujioka, H.; Sawama, Y.; Murata,
N.; Okitsu, T.; Kubo, O.; Matsuda, S.; Kita, Y. J. Am. Chem. Soc. 2004,
126, 11800-11801. (k) Fujioka, H.; Okitsu, T.; Sawama, Y.; Murata, N.;
Li, R.; Kita, Y. J. Am. Chem. Soc. 2006, 128, 5930-5938. (l) Bartoli, G.;
Bosco, M.; Locatelli, M.; Marcantoni, E.; Melchiorre, P.; Sambri, L. Org.
Lett. 2005, 7, 427-430. (m) Bartoli, G.; Bosco, M.; Carlone, A.; Dalpozzo,
R.; Locatelli, M.; Melchiorre, P.; Sambri, L. J. Org. Chem. 2006, 71, 9580-
9588. (n) House, S. E.; Poon, K. W. C.; Lam, H.; Dudley, G. B. J. Org.
Chem. 2006, 71, 420-422. (o) Li, B.; Berliner, M.; Buzon, R.; Chiu, C.
K.-F.; Colgan, S. T.; Kaneko, T.; Keene, N.; Kissel, W.; Le, T.; Leeman,
K. R.; Marquez, B.; Morris, R.; Newell, L.; Wunderwald, S.; Witt, M.;
Weaver, J.; Zhang, Z.; Zhang, Z. J. Org. Chem. 2006, 71, 9045-9050. (p)
Aristegui, S. R.; El-Murr, M. D.; Golding, B. T.; Griffin, R. J.; Hardcastle,
I. R. Org. Lett. 2006, 8, 5927-5929. (q) Fatakopoulou, I.; Barbayianni, E.;
Constantinou-Kokotou, V.; Bornscheuer, U. T.; Kokotos, G. J. Org. Chem.
2007, 72, 782-786.
Our proposed reaction mechanism for the deprotection of
these ethers is shown in Scheme 1, which depicts the
Scheme 1. Proposed Mechanism for the Acid-Mediated
Deprotection of Aromatic Ethers
(5) (a) For review, see: Ley, S. V.; Baxendale, I. R.; Bream, R. N.;
Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.;
Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815-
4195. (b) Petchmanee, T.; Ploypradith, P.; Ruchirawat, S. J. Org. Chem.
2006, 71, 2892-2895 and references cited therein (ref 1).
(6) (a) Kotecha, N. R.; Ley, S. V.; Montegani, S. Synlett 1992, 395-
398. (b) Mayer, A. A.; Murphy, B. P. Synth. Commun. 1985, 15, 423-
429. For compound 2, see refs 4l and 4k. See the Supporting Information.
(7) Surface area of silica (Silicycle) is 500 m2/g while that of Amberlyst-
15 (Fluka) is 45 m2/g.
2638
Org. Lett., Vol. 9, No. 14, 2007