5110
M. P. Samant, J. E. Rivier / Tetrahedron Letters 48 (2007) 5107–5110
purification (4a = 65%, 4b = 54%, 4c = 47% and
Supplementary data
4d = 35%). The crude 4d contained approximately 15%
of insoluble polymeric material.
Experimental procedures for the synthesis of amino
acids are given in Scheme 1 and for the synthesis of pep-
tide analog 9 in Table 1. Supplementary data associated
with this article can be found, in the online version, at
25
1
11. Compound 6d: oil; ½aꢀD +42.40 (c 1.0, MeOH); H NMR
(300 MHz, DMSO-d6): 7.96 (d, 1H, J = 8.7 Hz), 6.21 (s,
2H), 5.98–5.85 (m, 1H), 5.32 (dd, 1H, J = 17.1, 1.2 Hz),
5.19 (dd, 1H, J = 10.5, 1.2 Hz), 5.12 (d, 1H, J = 8.7 Hz),
4.51 (d, 2H, J = 5.1 Hz), 3.76 (s, 2H), 3.75 (s, 9H); 13C
NMR (75 MHz, DMSO-d6): 170.03, 160.23, 158.34,
158.30, 155.03, 133.34, 133.29, 117.07, 105.77, 90.67,
64.64, 56.17, 55.68, 55.16, 22.46; HRMS Calcd for
C16H21NO7S: 394.0931 (M+Na+). Found: 394.0920
(M+Na+), 2.8 ppm error.
12. The unreacted D-methyl esters were eluted with a mixture
of EtOAc/hexane (25:75) and the resolved Alloc-Ncy(tBu/
Tmob)–OH were eluted with EtOAc/MeOH (85:15).
13. Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Hugue-
nin, R.; Marbach, P.; Petcher, T. J.; Pless, J. Life Sci.
1982, 31, 1133–1140.
References and notes
1. Samant, M. P.; Rivier, J. E. Org. Lett. 2006, 8, 2361–2364.
2. Carpino, L. A.; Han, G. Y. J. Am. Chem. Soc. 1970, 92,
5748–5749.
3. Stevens, C. M.; Watanabe, R. J. Am. Chem. Soc. 1950, 72,
725–727.
4. Callahan, F. M.; Anderson, G. W.; Paul, R.; Zimmerman,
J. E. J. Am. Chem. Soc. 1963, 85, 201–207.
14. Penke, B.; Rivier, J. J. Org. Chem. 1987, 52, 1197–1200.
15. Chan, W. C.; White, P. D. Fmoc Solid Phase Peptide
Synthesis; Oxford University Press: New York, 2000.
16. Thieriet, N.; Alsina, J.; Giralt, E.; Guibe, F.; Albericio, F.
Tetrahedron Lett. 1997, 38, 7275–7278.
17. Rivier, J.; Erchegyi, J.; Hoeger, C.; Miller, C.; Low, W.;
Wenger, S.; Waser, B.; Schaer, J.-C.; Reubi, J. C. J. Med.
Chem. 2003, 46, 5579–5586.
5. Zervas, L.; Theodoropoulos, D. M. J. Am. Chem. Soc.
1956, 78, 1359–1363.
6. Munson, M. C.; Garcia-Echeverria, C.; Albericio, F.;
Barany, G. J. Org. Chem. 1992, 57, 3013–3018.
7. Moroder, L.; Musiol, H.-J.; Schaschke, N.; Chen, L.;
Hargittai, B.; Barany, G.2.6.6 Thiol Group. In Methods of
Organic Chemistry: Synthesis of Peptides and Peptidomi-
metics; Goodman, M., Felix, A., Moroder, L., Toniolo,
C., Eds.; Houben-Weyl: New York, 2002; Vol. E 22a, pp
384–423.
18. Cuthbertson, A.; Indrevoll, B. Tetrahedron Lett. 2000, 41,
3661–3663.
19. Nishimura, O.; Kitada, C.; Fujino, N. Chem. Pharm. Bull.
1978, 26, 1576.
20. Fujii, N.; Otaka, A.; Funakoshi, S.; Bessho, K.; Watan-
abe, T.; Akaji, K.; Yajima, H. Chem. Pharm. Bull.
(Tokyo) 1987, 35, 2339–2347.
8. Vetter, S. Synth. Commun. 1998, 28, 3219–3223.
9. Miyazawa, T.; Iwanaga, H.; Yamada, T.; Kuwata, S.
Biotechnol. Lett. 1994, 16, 373–378.
10. Compounds 3 and 5 were obtained in quantitative yields
from 1 and 4, respectively. Compounds 4a–d and 5a–d
were purified by column chromatography. The racemic
amino acids 4a–d were obtained in 35–65% yield after
21. The RP-HPLC purified peptide analogues 8 and 9 were
obtained in 43% and 32% yields, respectively.