We have developed the “cation pool” method using low-
temperature electrochemical oxidation.8À10 Based on the
“cation pool” method, we have recently reported alkoxy-
sulfonium ion mediated integrated electrochemicalÀchemical
oxidation, which solves the formidable overoxidation
problem (Scheme 1a).11 Electrochemically generated car-
bocations are converted to the alkoxysulfonium ions,
which give the corresponding carbonyl compounds by
treatment with amines. We envisioned that hydrolysis of
the electrochemically generated alkoxysulfonium ions
would give the corresponding alcohols (Scheme 1b). Be-
cause the oxidation step (electrolysis) and the alcohol-
forming step (hydrolysis) are separated, the products
are not exposed to the oxidation conditions and overoxi-
dation should not occur. This integrated hydroxylation
reaction and previously reported integrated electroche-
micalÀchemical oxidation to carbonyl compounds are
complementary. Herein we report on the aforementioned
oxidation reaction via electrochemical oxidation to give
alkoxysulfonium ions and their hydrolysis.
First, we began by studying the oxidation of toluenes to
benzyl alcohols.12 Toluenes were electrochemically oxi-
dized in the presence of DMSO in CH2Cl2 using Bu4NBF4
as a supporting electrolyte at rt. A divided cell equipped
with a C-felt anode and a Pt-plate cathode was used. After
electrolysis, the resulting solution was hydrolyzed by aqu-
eous NaOH or MeOH/H2O at 0 °C to give the correspond-
ing benzyl alcohols in good yields (Table 1).
Table 1. Integrated OxidationÀHydrolysis of Toluenesa
Scheme 1. Selective Oxidation Mediated by Alkoxysulfonium
Ion
a Reactions were carried out on a 0.25 mmol scale. b Isolated yield
after chromatography. c Hydrolyzed by aqueous NaOH.
Ingeneral, electrochemical benzylic monohydroxylation
is quite difficult because the products are also oxidized to
give benzaldehyde and benzoic acid.7c,13 In fact, the oxida-
tion potential of 4-methoxybenzyl alcohol (1.42 V vs SCE)
lies close enough to that of 4-methoxytoluene (1.38 V vs
SCE)14 to make selective oxidation of the toluene near
impossible. However, the present transformation enables
direct oxidation of toluenes to benzyl alcohols with high
selectivity. Presumably a positive charge in the alkoxysul-
fonium ion retards further oxidation by raising the oxida-
tion potential.15 Alternatively, overoxidation is prevented
because a positively charged alkoxysulfonium ion cannot
readily approach a positively charged anode. Interestingly,
toluenes having more than two methyl groups were selec-
tively oxidized to monoalcohols (Table 1, entries 3 and 4).
Preventionofthe oxidationofthe second methylgroupcan
also be attributed to the positive charge of the alkoxysul-
fonium ion intermediate.
(7) (a) Raoult, E.; Sarrazin, J.; Tallec, A. J. Appl. Electrochem. 1984,
14, 639. (b) Ogibin, Y. N.; Ilovaiskii, A. I.; Nikisin, G. I. Russ. Chem.
Bull. 1994, 43, 1536. (c) Purgato, F. L. S.; Ferreira, M. I. C.; Romero,
J. R. J. Mol. Catal. A: Chem. 2000, 161, 99. (d) Halas, S. M.; Okyne, K.;
Fry, A. J. Electrochim. Acta 2003, 48, 1837.
(8) N-Acyliminium ion pools: (a) Yoshida, J.; Suga, S.; Suzuki, S.;
Kinomura, N.; Yamamoto, A.; Fujiwara, K. J. Am. Chem. Soc. 1999,
121, 9546. (b) Suga, S.; Okajima, M.; Fujiwara, K.; Yoshida, J. J. Am.
Chem. Soc. 2001, 123, 7941. (c) Suga, S.; Watanabe, M.; Yoshida, J.
J. Am. Chem. Soc. 2002, 124, 14824. (d) Yoshida, J.; Suga, S. Chem.;
Eur. J. 2002, 8, 2651. (e) Maruyama, T.; Mizuno, Y.; Shimizu, I.; Suga,
S.; Yoshida, J. J. Am. Chem. Soc. 2007, 129, 1902. (f) Suga, S.; Shimizu,
I.; Ashikari, Y.; Mizuno, Y.; Maruyama, T.; Yoshida, J. Chem. Lett.
2008, 37, 1008.
(9) Alkoxycarbenium ion pools: (a) Suga, S.; Suzuki, S.; Yamamoto,
A.; Yoshida, J. J. Am. Chem. Soc. 2000, 122, 10244. (b) Okajima, M.;
Suga, S.; Itami, K.; Yoshida, J. J. Am. Chem. Soc. 2005, 127, 6930. (c)
Suga, S.; Matsumoto, K.; Ueoka, K.; Yoshida, J. J. Am. Chem. Soc.
2006, 128, 7710.
(10) Diarylcarbenium ion pools: (a) Okajima, M.; Soga, K.; Nokami,
T.; Suga, S.; Yoshida, J. Org. Lett. 2006, 8, 5005. (b) Nokami, T.; Ohata,
K.; Inoue, M.; Tsuyama, H.; Shibuya, A.; Soga, K.; Okajima, M.; Suga,
S.; Yoshida, J. J. Am. Chem. Soc. 2008, 130, 10864. (c) Okajima, M.;Soga,
K.; Watanabe, T.; Terao, K.; Nokami, T.; Suga, S.; Yoshida, J. Bull.
Chem. Soc. Jpn. 2009, 82, 594. (d) Terao, K.; Watanabe, T.; Suehiro, T.;
Nokami, T.; Yoshida, J. Tetrahedron Lett. 2010, 51, 4107. (e) Nokami, T.;
Watanabe, T.; Musya, N.; Suehiro, T.; Morofuji, T.; Yoshida, J. Tetra-
hedron 2011, 67, 4664. (f) Nokami, T.; Watanabe, T.; Musya, N.;
Morofuji, T.; Tahara, K.; Tobe, Y.; Yoshida, J. Chem. Commun. 2011,
47, 5575.
Next, we examined oxidative dihydroxylation of alkenes.16
trans-Stilbene was electrochemically oxidized in the presence
of DMSO to give the bisalkoxysulfonium ion, whose struc-
ture was determined by 1H NMR spectroscopy. Hydrolysis
(13) Anodic acetoxylation usually gives monoacetolylation products;
see: (a) Srivastav, M. K.; Saraswat, A.; Singh, R. K. P. Orient. J. Chem.
2010, 26, 61. (b) Tajima, T.; Kishi, Y.; Nakajima, A. Electrochim. Acta
2009, 54, 5959.
(11) Ashikari, Y.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2011,
133, 11840.
(12) For recent advances within this area: (a) Wang, S.; Lie, F.; Lim,
E.; Li, K.; Li, Z. Adv. Synth. Catal. 2009, 351, 1849. (b) Monfared, H. H.;
Kheirabadi, S.; Lalami, N. A.; Mayer, P. Polyhedron 2011, 30, 1375.
(14) The oxidation potentials were measured by RDE in LiClO4/
CH3CN using an SCE as a reference electrode. See Supporting
Information.
(15) In the presence of DMSO, a substrate having a higher oxidation
potential than that of DMSO is not electrolyzed. See ref 11.
Org. Lett., Vol. 14, No. 3, 2012
939