C O M M U N I C A T I O N S
is reasonably attributed to antiferromagnetic coupling of two Cr(III)
ions (d3) mediated by the bridging ligands.
With dinitrogen complex 2, we have prepared a readily accessible
and reactive Cr(I) synthon. The chemistry described here is merely
the tip of an iceberg; further studies of Cr(I) compounds are in
progress in this laboratory.
Acknowledgment. This research was supported by NSF (CHE-
0616375) and DOE (DE-FG02-92ER14273). We thank P. Tobash
and S. Bobev for help with the preparation of chromous iodide.
Supporting Information Available: Experimental details regarding
the synthesis and characterization of 1-6 (pdf) and the X-ray structure
determinations of 2-6 (cif). This material is available free of charge
References
(1) (a) Kim, W. K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A. L.;
Theopold, K. H. Organometallics 1998, 17, 4541-4543. (b) MacAdams,
L. A.; Kim, W. K.; Liable-Sands, L. M.; Guzei, I. A.; Rheingold, A. L.;
Theopold, K. H. Organometallics 2002, 21, 952-960. (c) MacAdams,
L. A.; Buffone, G. P.; Incarvito, C. D.; Golen, J. A.; Rheingold, A. L.;
Theopold, K. H. Chem. Commun. 2003, 1164-1165. (d) MacAdams, L.
A.; Buffone, G. P.; Incarvito, C. D.; Rheingold, A. L.; Theopold, K. H.
J. Am. Chem. Soc. 2005, 127, 1082-1083.
(2) (a) Richards, R. L.; Chatt, J.; Fay, R. C. J. Chem. Soc. A 1971, 702-704.
(b) Sellmann, D.; Brandl, A.; Endell, R. J. Organomet. Chem. 1975, 90,
309-318. (c) Girolami, G. S.; Salt, J. E.; Wilkinson, G.; Thornton-Pett,
M.; Hursthouse, M. B. J. Am. Chem. Soc. 1983, 105, 5954-5956. (d)
Church, S. P.; Grevels, F. W.; Hermann, H.; Schaffner, K. Inorg. Chem.
1984, 23, 3830-3833. (e) Denholm, S.; Hunter, G.; Weakley, T. J. R. J.
Chem. Soc., Dalton Trans. 1987, 2789-2791. (f) Zhang, Q.-F.; Chim, J.
L. C.; Lai, W.; Wong, W.-T.; Leung, W.-H. Inorg. Chem. 2001, 40, 2470-
2471.
(3) (a) For a recent review, see: MacLachlan, E. A.; Fryzuk, M. D.
Organometallics 2006, 25, 1530-1543.
(4) (a) Cotton, F. A.; Kibala, P. A. Polyhedron 1987, 6, 645-646. (b) Cotton,
F. A.; Kibala, P. A. Inorg. Chem. 1990, 29, 3192-3196. (c) Cotton, F.
A.; Dikarev, E. V.; Petrukhina, M. A.; Taylor, R. E. J. Am. Chem. Soc.
2001, 123, 5831-5832. (d) Burns, C. J.; Andersen, R. A. J. Am. Chem.
Soc. 1987, 109, 915-917. (e) Takahashi, T.; Kasai, K.; Suzuki, N.;
Nakajima, K.; Negishi, E. Organometallics 1994, 13, 3413-3414. (f)
Fischer, R.; Walther, D.; Gebhardt, P.; Goerls, H. Organometallics 2000,
19, 2532-2540. (g) Dube, T.; Gambarotta S.; Yap, G. P. A. Angew. Chem.,
Int. Ed. 1999, 38, 1432. (h) Shapiro, P. J.; Cotter, W. D.; Schaefer W. P.;
Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1994, 116, 4623-4640.
(i) Fernandez, F. J.; Gomez-Sal, P.; Manzanero, A.; Royo, P.; Jacobsen,
H.; Berke, H. Organometallics 1997, 16, 1553-1561.
(5) (a) Hess, A.; Ho¨rz, M. R.; Liable-Sands, L. M.; Lindner, D. C.; Rheingold,
A. L.; Theopold, K. H. Angew. Chem. Int. Ed. 1999, 38, 166-168. (b)
Hess, J. S.; Leelasubcharoen, S.; Rheingold, A. L.; Doren, D. J.; Theopold,
K. H. J. Am. Chem. Soc. 2002, 124, 2454-2455. (c) Qin, K.; Incarvito,
C. D.; Rheingold, A. L.; Theopold, K. H. Angew. Chem., Int. Ed. 2002,
41, 2333-2335.
(6) (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic
Compounds; Academic Press: New York, 1981. (b) Martell, A. E.;
Sawyer, D. T. Oxygen Complexes and Oxygen ActiVation by Transition
Metals; Plenum Press: New York, 1988. (c) Meyer, F.; Limberg, C.
Organometallic Oxidation Catalysis; Springer: Berlin, 2007; Vol. 22.
(7) (a) Evans, W. J.; Drummond, D. K.; Chamberlain, L. R.; Doedens, R. J.;
Bott, S. G.; Zhang, H.; Atwood, J. L. J. Am. Chem. Soc. 1988, 110, 4983-
4994. (b) Schrock, R. R.; Glassman, T. E.; Vale, M. G.; Kol, M. J. Am.
Chem. Soc. 1993, 115, 1760-1772. (c) Wigley, D. E. Prog. Inorg. Chem.
1994, 42, 239-248. (d) Aubart, M. A.; Bergman, R. G. Organometallics
1999, 18, 811-813. (e) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.;
Mindiola, D. J.; Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108-
6109. (f) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem.
Soc. 2003, 125, 15752-15753. (g) Kilgore, U. J.; Yang, X.; Tomaszewski,
J.; Huffman, J. C.; Mindiola, D. J. Inorg. Chem. 2006, 45, 10712-10721.
Figure 2. The molecular structures of 3 and 4 (both at 30% probability
level); selected interatomic distances (Å) and angles (deg) for 3: Cr1-C1,
1.833(2); Cr1-C2, 1.797(2); Cr1-C3, 1,797(2); Cr2-O2, 2.0894(15); Cr2-
O3, 2.0905(15); C2-O2, 1.203(2); C3-O3, 1.204(2); Cr1-C2-O2,
162.04(16); Cr1-C3-O3, 160.32(16); C2-O2-Cr2, 122.34(12); C3-O3-
Cr2, 123.59(13); 4: Cr1-C1, 2.151(3); Cr1-C1A, 2.168(3); C1-C1A,
1.482(6); Cr1-C1-Cr1A, 139.87(16); Cr1-C1-C1A, 70.6(2).
Intermediate between O2 (which oxidatively adds) and C2H4
(which merely binds) is diimine (N2H2). Due to the instability of
this simple molecule, we chose its phenyl derivative azobenzene
(Ph-NdN-Ph) as a stand-in. Addition of 1 equiv of azobenzene
to a THF solution of 2 produced [(i-Pr2Ph)2nacnacCr]2(µ-NPh)2 (6).
The structure of 6 (see Supporting Information) showed it to be a
binuclear Cr(III) complex joined by two bridging phenylimido
ligands. Apparently, oxidative addition of the NdN double bond
has taken place,7 halting, in this instance, at the +III formal
oxidation state. Like all other molecules described here, 6 is
paramagnetic and its magnetic moment (µeff(293 K) ) 2.6(1) µB)
JA0725549
9
J. AM. CHEM. SOC. VOL. 129, NO. 26, 2007 8091