Page 5 of 6
Journal of the American Chemical Society
2014, 136, 13610-13613. (d) Wei, H.; Qiao, C.; Liu, G.; Yang, Z.; Li, C.-
C. Stereoselective Total Syntheses of (-)-Flueggine A and (+)-Virosaine B.
Angew. Chem., Int. Ed. 2013, 52, 620-624.
(12) (a) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. A
General Model for Selectivity in Olefin Cross Metathesis. J. Am. Chem. Soc.
2003, 125, 11360-11370. (b) Xu, J.; Caro-Diaz, E. J. E.; Trzoss, L.;
Theodorakis, E. A. Nature-Inspired Total Synthesis of (-)-Fusarisetin A. J.
Am. Chem. Soc. 2012, 134, 5072-5075.
(13) For selected reviews, see: (a) Taylor, R. E.; Engelhardt, F. C.;
Schmitt, M. J. Biosynthetic Inspirations: Cationic Approaches to
Cyclopropane Formation. Tetrahedron 2003, 59, 5623-5634. (b) Lebel, H.;
Marcoux, J. F.; Molinaro, C.; Charette, A. B. Stereoselective
Cyclopropanation Reactions. Chem. Rev. 2003, 103, 977-1050. (c) Ebner,
C.; Carreira, E. M. Cyclopropanation Strategies in Recent Total Syntheses.
Chem. Rev. 2017, 117, 11651-11679. (d) Jin, W.; Yuan, H.; Tang, G.
Strategies for Construction of Cyclopropanes in Natural Products. Chin. J.
Org. Chem. 2018, 38, 2324-2334.
(14) For reviews on the cleavage of the C-O bond, see: (a) Bhatt, M. V.;
Kulkarni, S. U. Cleavage of Ethers. Synthesis 1983, 249-282. (b) Maercker,
A. Ether Cleavage with Organo-Alkali-Metal Compounds and Alkali-
Metals. Angew. Chem., Int. Ed. 1987, 26, 972-989.
(17) Achmatowicz, O., Jr.; Bukowski, P.; Szechner, B.; Zwierzchowska,
Z.; Zamojski, A. Synthesis of Methyl 2, 3-Dideoxy-DL-Alk-2-
Enopyranosides from Furan Compounds: A General Approach to the Total
Synthesis of Monosaccharides. Tetrahedron 1971, 27, 1973-1996.
(18) Yang, Y.; Haskins, C. W.; Zhang, W.; Low, P. L.; Dai, M. J.
Divergent Total Syntheses of Lyconadins A and C. Angew. Chem. Int. Ed.
2014, 53, 3922-3925.
(19) (a) Chi, Y.; Gellman, S. H. Diphenylprolinol Methyl Ether: A
Highly Enantioselective Catalyst for Michael Addition of Aldehydes to
Simple Enones. Org. Lett. 2005, 7, 4253-4256. (b) Nicolaou, K. C.; Sarlah,
D.; Shaw, D. M. Total Synthesis and Revised Structure of Biyouyanagin A.
Angew. Chem., Int. Ed. 2007, 46, 4708-4711.
1
2
3
4
5
6
7
8
9
(20) For synthesis of 8 and 9, see the Supporting Information for details.
(21) For related reviews on the cleavage of C-O bond of [2.2.1]
oxabicycles, see: (a) Chiu, P.; Lautens, M. Using Ring-Opening Reactions
of Oxabicyclic Compounds as a Strategy in Organic Synthesis. Top. Curr.
Chem. 1997, 190, 1-85. (b) Lautens, M.; Fagnou, K.; Hiebert, S. Transition
Metal-Catalyzed Enantioselective Ring-Opening Reactions of Oxabicyclic
Alkenes. Acc. Chem. Res. 2003, 36, 48-58. For selected references on the
cleavage of C-O bond of [3.2.1] oxabicycles, see: (c) Lautens, M.; Fillion,
E.; Sampat, M. Base-Induced Ring Opening of Aza- and Thiaoxa[3.2.1] and
-[3.3.1]bicycles as an Enantioselective Approach to Azepines, Thiepines,
and Thiocines. J. Org. Chem. 1997, 62, 7080-7081. (d) Rodríguez, J. R.;
Castedo, L.; Mascareñas, J. L. Tandem Organolithium Addition/Oxa-
Bridge Opening of 8-Oxa[3.2.1]bicyclic Pyrone-Alkene Adducts. Synthesis
2000, 980-984. (e) Kreiselmeier, G.; Fölisch, B. Total Synthesis of Racemic
Lasidiol via Intramolecular [4+3] Cycloaddition. Tetrahedron Lett. 2000,
41, 1375-1379. (f) Lee, J. C.; Cha, J. K. Total Synthesis of
Tropoloisoquinolines: Imerubrine, Isoimerubrine, and Grandirubrine. J. Am.
Chem. Soc. 2001, 123, 3243-3246. (g) Lautens, M.; Hiebert, S.; Renaud, J.-
L. Mechanistic Studies of the Palladium-Catalyzed Ring Opening of
Oxabicyclic Alkenes with Dialkylzinc. J. Am. Chem. Soc. 2001, 123, 6834-
6839. (h) Hodgson, D.; Maxwell, C. R.; Miles, T. J.; Paruch, E.; Stent, M.
A. H.; Matthews, I. R.; Wilson, F. X.; Witherington, J. Enantioselective
Alkylative Double Ring Opening of Epoxides: Synthesis of
Enantioenriched Unsaturated Diols and Amino Alcohols. Angew. Chem.,
Int. Ed. 2002, 41, 4313-4316. (i) Williams, Y. D.; Meck, C.; Mohd, N.;
Murelli, R. P. Triflic Acid-Mediated Rearrangements of 3-Methoxy-8-
oxabicyclo[3.2.1]octa-3,6-dien-2-ones: Synthesis of Methoxytropolones
and Furans. J. Org. Chem. 2013, 78, 11707-11713. (j) Oblak, E. Z.;
VanHeyst, M. D.; Li, J.; Wiemer, A. J.; Wright, D. L. Cyclopropene
Cycloadditions with Annulated Furans: Total Synthesis of (+)- and (-)-
Frondosin B and (+)-Frondosin A. J. Am. Chem. Soc. 2014, 136, 4309-4315.
(22) For selective examples, see: (a) Taylor, R. E.; Engelhardt, F. C.;
Schmitt, M. J.; Yuan, H. Synthetic Methodology for the Construction of
Structurally Diverse Cyclopropanes. J. Am. Chem. Soc. 2001, 123, 2964-
2969. (b) Taber, D. F.; He, Y.; Xu, M. Enantioselective Construction of
Carbobicyclic Scaffolds. J. Am. Chem. Soc. 2004, 126, 13900-13901. (c)
Melancon, B. J.; Perl, N. R.; Taylor, R. E. Competitive Cationic Pathways
and the Asymmetric Synthesis of Aryl-Substituted Cyclopropanes. Org.
Lett. 2007, 9, 1425-1428.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) For the type II intramolecular [5+2] cycloaddition developed by our
group, see: (a) Mei, G.; Liu, X.; Qiao, C.; Chen, W.; Li, C.-C. Type II
Intramolecular [5+2] Cycloaddition: Facile Synthesis of Highly
Functionalized Bridged Ring Systems. Angew. Chem. Int. Ed. 2015, 54,
1754-1758. (b) Liu, X.; Liu, J.; Zhao, J.; Li, S.; Li, C.-C. Toward the Total
Synthesis of Eurifoloid A. Org. Lett. 2017, 19, 2742-2745.
(16) For selective examples of type I intramolecular [5+2] cycloaddition
reactions, see: (a) Walls, F.; Padilla, J.; Joseph-Nathan, P.; Giral, F.; Romo,
J. The Structures of and -Pipitzols. Tetrahedron Lett. 1965, 21, 1577-
1582. (b) Sammes, P. G.; Street, L. J. Intramolecular Cycloadditions with
Oxidopyrylium Ylides. J. Chem. Soc., Chem. Commun. 1982, 1056-1057.
(c) Garst, M. E.; Mcbride, B. J.; Douglass, J. G. Intramolecular
Cycloadditions with 2-(ω-Alkenyl)-5-Hydroxy-4-Pyrones. Tetrahedron
Lett. 1983, 24, 1675-1678. (d) Wender, P. A.; Lee, H. Y.; Wilhelm, R. S.;
Williams, P. D. Studies on Tumor Promoters. 7. The Synthesis of a
Potentially General Precursor of the Tiglianes, Daphnanes, and Ingenanes.
J. Am. Chem. Soc. 1989, 111, 8954-8957. (e) Wender, P. A.; Rice, K. D.;
Schnute, M. E. The First Formal Asymmetric Synthesis of Phorbol. J. Am.
Chem. Soc. 1997, 119, 7897-7898. (f) Wender, P. A.; Jesudason, C. D.;
Nakahira, H.; Tamura, N.; Tebbe, A. L.; Ueno, Y. The First Synthesis of a
Daphnane Diterpene: The Enantiocontrolled Total Synthesis of (+)-
Resiniferatoxin. J. Am. Chem. Soc. 1997, 119, 12976-12977. (g) Rodrıguez,
J. R.; Rumbo, A.; Castedo, L.; Mascareñas, J. L. [5+2] Pyrone-Alkene
Cycloaddition Approach to Tetrahydrofurans. Expeditious Synthesis of (±)-
Nemorensic Acid. J. Org. Chem. 1999, 64, 4560-4563. (h) Burns, N. Z.;
Witten., M. R.; Jacobsen, E. N. Dual Catalysis in Enantioselective
Oxidopyrylium-Based [5+2] Cycloadditions. J. Am. Chem. Soc. 2011, 133,
14578-14581. (i) Zhang, M.; Liu, N.; Tang, W. Stereoselective Total
Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based
[5+2] Cycloaddition. J. Am. Chem. Soc. 2013, 135, 12434-12438. (j)
Simanis, J. A.; Law, C. M.; Woodall, E. L.; Hamaker, C. G.; Goodle, J. R.;
Mitchell, T. A. Investigation of Oxidopyrylium-Alkene [5+2]
Cycloaddition Conjugate Addition Cascade (C3) Sequences. Chem.
Commun. 2014, 50, 9130-9133. (k) Mei, G.; Yuan, H.; Gu, Y.; Chen, W.;
Chung, L. W.; Li, C.-C. Dearomative Indole [5+2] Cycloaddition Reactions:
Stereoselective Synthesis of Highly Functionalized Cyclohepta[b]indoles.
Angew. Chem., Int. Ed. 2014, 53, 11051-11055. (l) Kruger, S.; Gaich, T.
Enantioselective, Protecting-Group-Free Total Synthesis of Sarpagine
Alkaloids-A Generalized Approach. Angew. Chem., Int. Ed., 2015, 54, 315-
317. (m) He, C.; Hu, J.; Wu, Y.; Ding, H. Total Syntheses of Highly
Oxidized ent-Kaurenoids Pharicin A, Pharicinin B, 7-O-Acetylpseurata C,
and Pseurata C: A [5+2] Cascade Approach. J. Am. Chem. Soc. 2017, 139,
6098-6101. (n) Zhao, C.; Glazier, D. A.; Yang, D.; Yin, D.; Guzei, I. A.;
(23) Huang, M. Simple Modification of the Wolff-Kishner Reduction. J.
Am. Chem. Soc. 1946, 68, 2487-2488.
(24) Dhawan, D.; Grover,S. K. Facile Reduction of Chalcones to
Dihydrochalcones with NaBH4/Ni2+ System. Synth. Commun. 1992, 22,
2405-2409.
(25) Compounds 1, 2, 3, 4 and 24 were unstable in CDCl3, due to the
instability of the bridgehead vinylcyclopropane double bond.
Aristov M. M.; Liu, P.; Tang, W. Intermolecular Regio
- and
Stereoselective Hetero - [5+2] Cycloaddition between Oxidopyrylium
Ylide and Cyclic Imine: Facile Access to Highly Substituted Azepanes
Angew. Chem., Int. Ed., DOI: 10.1002/anie.201811896. For selected
reviews of [5+2] cycloaddition reaction in natural product synthesis, see:
(o) Liu, X.; Hu, Y. J.; Fan, J. H.; Zhao, J.; Li, S. P.; Li, C.-C. Recent
Synthetic Studies towards Natural Products via [5+2] Cycloaddition
Reactions. Org. Chem. Front. 2018, 5, 1217-1228. (p) Bejcek, L. P.;
Murelli, R. P.; Oxidopyrylium [5+2] Cycloaddition Chemistry: Historical
Perspective and Recent Advances (2008-2018). Tetrahedron 2018, 74,
2501-2521. (q) Ylijoki, K. E. O.; Stryker, J. M. [5+2] Cycloaddition
Reactions in Organic and Natural Product Synthesis. Chem. Rev. 2013, 113,
2244-2266.
ACS Paragon Plus Environment