C O M M U N I C A T I O N S
Scheme 4. Fragment Coupling and Salvinorin A Synthesisa
reinforce the desired diastereoselectivity, a fact borne out by the
experiments. This analysis also suggests that enolization favors the
Z-enolate. While this analysis presumes a stepwise process, a
concerted mechanism involving exo-selective Diels-Alder cyclo-
addition24 via the derived dipole-minimized enolate of 3 cannot be
excluded.
In conclusion, we completed the first synthesis of salvinorin A
and demonstrated the utility of a transannular reaction cascade in
the construction of polycyclic architectures. Current efforts are di-
rected toward finding epimerization conditions that favor the natural
C8 stereochemistry, probing the mechanism of the cascade reaction,
and synthesizing analogues of 1 that bear modified C12 functionality.
Acknowledgment. Support was provided by the National
Institutes of Health (GM-33327-19) and by unrestricted support
from Amgen, Merck, and Eli Lilly. The authors wish to thank Dr.
Regan Thomson for helpful suggestions.
Supporting Information Available: Experimental procedures,
spectroscopic data, and copies of 1H and 13C NMR spectra for all
compounds. This material is available free of charge via the Internet
a Reaction conditions: (a) n-BuLi, MgBr2•(OEt)2, -78 °C, then 5,
MgBr2•OEt2, CH2Cl2, -78 to 0 °C; (b) TBSOTf, 2,6-lutidine; (c) PPTS,
MeOH; (d) LiOH, i-PrOH, H2O; (e) MNBA, DMAP, [0.0015 M]; (f) TBAF;
(g) Dess-Martin periodinane; (h) TBAF, -78 to 5 °C; (i) NaH, Comins
reagent; (j) Pd(OAc)2, dppf, Et3SiH; (k) L-Selectride, t-BuOH, -78 to
-55 °C; (l) LiBF4, MeCN/H2O; (m) NaClO2; TMSCHN2; (n) K2CO3,
MeOH, quant. mass recovery; (o) Ac2O, py., DMAP.
References
(1) Ortega, A.; Blount, J. F.; Manchand, P. S. J. Chem. Soc., Perkin Trans.
1 1982, 10, 2505-2508.
(2) (a) Roth, B. L.; Baner, K.; Westkaemper, R.; Siebert, D.; Rice, K. C.;
Steinberg, S.; Ernsberger, P.; Rothman, R. B. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 11934-11939. (b) For molecular mechanism studies of KOR
binding, see: Yan, F.; Mosier, P. D.; Westkaemper, R. B.; Stewart, J.;
Zjawiony, J. K.; Vortherms, T. A.; Sheffler, D. J.; Roth, B. L. Biochemistry
2005, 44, 8643-8651.
Scheme 5. Transannular Cyclization Analysis
(3) Shirota, O.; Nagamatsu, K.; Sekita, S. J. Nat. Prod. 2006, 69, 1782-
1786 and references therein.
(4) (a) Beguin, C.; Richards, M. R.; Li, J.; Wang, Y.; Xu, W.; Liu-Chen, L.;
Carlezon, W. A., Jr.; Cohen, B. M. Bioorg. Med. Chem. Lett. 2006, 16,
4679-4685 and references therein. (b) Tidgewell, K.; Harding, W. W.;
Lozama, A.; Cobb, H.; Shah, K.; Kannan, P.; Dersch, C. M.; Parrish, D.;
Deschamps, J. R.; Rothman, R. B.; Prisinzano, T. E. J. Nat. Prod. 2006,
69, 914-918 and references therein.
(5) (a) Evans, D. A.; Starr, J. T. Angew. Chem., Int. Ed. 2002, 41, 1787-
1790. (b) Evans, D. A.; Scheerer, J. R. Angew. Chem., Int. Ed. 2005, 44,
6038-6042.
(6) Ho, T. Tandem Organic Reactions; Wiley & Sons: New York, 1992;
Chapter 3, pp 33-56.
(7) Still, W. C.; Galynker, I. Tetrahedron 1981, 37, 3981-3996.
(8) Evans, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2005, 128, 10506-
10507.
(9) Pollet, P.; Gelin, S. Synthesis 1978, 142-143.
(10) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199-1205.
(11) Nagao, Y.; Fujita, E. J. Org. Chem. 1986, 51, 2391-2393.
(12) We targeted the indicated C7-diastereomer because molecular modeling
studies suggested a gearing effect, potentially rendering the macrolacton-
ization of 16 more facile.
(13) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122,
1806-1807.
reports and having an identical optical rotation (synthetic 1 [R]25
D
-40.7 (c ) 0.12, CHCl3); natural 1, [R]25D -41 (c ) 1, CHCl3)).1
As a prelude to the pivotal cyclization cascade (3f2) featured
in the synthesis, model systems were designed to probe the influence
of the resident stereocenters on the course of the cyclization (eqs
1 and 2). The first cyclization evaluated the role of the C12-furyl
moiety and resulted in complete diastereocontrol (eq 1). Subsequent
inclusion of the C4-dimethyl acetal seemingly reinforced the
diastereoselection imparted by the C12-substituent (eq 2).
(14) KHMDS and LiHMDS caused elimination of the allylic silyloxyether.
NaH effected heteroconjugate addition of the C2-alkoxide onto the
extended polyene system. Interestingly, treatment of the C2-diastereomer
with NaH cleanly afforded benzyloxymethylated product.
(15) Dupau, P.; Epple, R.; Thomas, A. A.; Fokin, V. V.; Sharpless, K. B. AdV.
Synth. Catal. 2002, 344, 421-433.
(16) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986-2012
and references therein.
(17) Brown, C. A.; Yamashita, A. J. Am. Chem. Soc. 1975, 97, 891-893.
(18) Negishi, E.; Van Horn, D. E.; King, A. O.; Okukado, N. Synthesis 1979,
79, 501-502.
(19) (a) Shiina, I.; Kubota, M.; Ibuka, R.; Tetrahedron Lett. 2002, 43, 7535-
7539. (b) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org.
Chem. 2004, 69, 1822-1830.
(20) Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299-6302.
(21) Kotsuki, H.; Datta, P. K.; Hayakawa, H.; Suenaga, H. Synthesis 1995,
1348-1350.
(22) (a) Ganem, B.; Fortunato, J. M. J. Org. Chem. 1975, 40, 2846-2848. (b)
Fortunato, J. M.; Ganem, B. J. Org. Chem. 1976, 41, 2194-2200.
(23) This likely is due to the small energy difference between chair and boat
δ-lactones. See: (a) Thomas, S. A. J. Crystallogr. Spectrosc. Res. 1985,
15, 115-131. (b) Stanley, J.; Matallana, A.; Kinsbury, C. A. J. Phy. Org.
Chem. 1990, 3, 419-427.
Scheme 5 provides a rationale for the observed selectivity in
the 3f2 cyclization: conformational analysis of 3 suggests that
the three stereocenters, in pseudo-equatorial positions, mutually
(24) For a review of TADA reactions in synthesis, see: Marsault, E.; Toro,
A.; Nowak, P.; Deslongchamps, P. Tetrahedron 2001, 57, 4243-4260.
JA073590A
9
J. AM. CHEM. SOC. VOL. 129, NO. 29, 2007 8969