Published on Web 06/16/2007
Convergent Synthesis of Alternating Fluorene-p-xylene
Oligomers and Delineation of the (Silver) Cation-Induced
Folding
Vincent J. Chebny and Rajendra Rathore*
Contribution from the Department of Chemistry, Marquette UniVersity, P.O. Box 1881,
Milwaukee, Wisconsin 53201-1881
Received December 6, 2006; E-mail: rajendra.rathore@marquette.edu
Abstract: Convergent synthetic routes for the preparation of hitherto unknown fluorene-p-xylene oligomers
(containing up to 10 fluorene moieties) from readily available starting materials are described. The
conformationally adaptable monomeric receptor (which is made of a pair of fluorene and one p-xylene
ring, i.e., Z1) undergoes a simple C-C bond rotation in the presence of silver cations to produce a
π-prismand-like receptor which binds a single silver cation with remarkable efficiency (i.e., K ≈ 15 000
M-1). The data on 1H NMR spectroscopic titrations with Ag+ together with the density functional theory and
AM1 calculations allows us to establish that various oligomers of Z1 (i.e., Z2-Z9) also undergo ready
folding into the structures that contain multiple π-prismand-like receptor sites in the presence of silver cations.
The multiple cavities in Z3-Z9 accommodate a single silver cation per cavity with efficiency similar to that
of Z1.
evolving areas of molecular electronics and nanotechnology.9
A number of such synthetic materials, generally termed “fol-
Introduction
There are numerous examples in nature where weak inter-
and intramolecular bonding interactions (such as hydrogen
bonding,1 π-stacking,2 Columbic interactions,3 metal-ion bind-
ing,4 etc.) permit structure modulation of the biopolymers (such
as polypeptides, ribonucleic acid, polysaccharides) into well-
defined ‘molecular machines’ that perform complex functions
from enzymatic catalysis to information storage and retrieval.5
Furthermore, the design and syntheses of artificial polymeric
(organic) materials whose structures can be modulated by
external stimuli (such as heat,6 light,7 or metal-ion binding8)
constitute an important area of research owing to the fact that
such materials may hold potential for applications in the ever
damers”, have been prepared and are discussed in detail in a
recently published review article by Moore and co-workers.10
We recently synthesized11 a hydrocarbon ligand 1,4-bis(9-
methyl-9H-fluoren-9-yl)methyl]benzene (1, see structure below)
from readily available fluorene and R,R-dichloro-p-xylene that
possesses an unique molecular structure where a simple C-C
single bond rotation converts it from an extended (“Z”)
conformer to an isoenergetic (folded) delta (“∆”) conformer,
as established by density functional theory (DFT) calculations11
at the B3LYP/6-31G* level. The cavity formed by three
aromatic walls (i.e., two fluoranyl rings and one p-xylyl ring)
in the “∆” conformation of 1 is remarkably similar to that found
in π-prismand (2)12sa well-known and efficient receptor for
the binding of a variety of metal cations12,13sas shown in Figure
1. Although, the energy difference between the two conformers
of 1 is only ∼0.4 kcal/mol, X-ray crystal structure analysis
showed that 1 in the solid state exists exclusively as the extended
(1) (a) Murray, T. J.; Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-
4011. (b) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem. Soc. 2000, 122,
3799. (c) Margulis, C. J.; Stern, H. A.; Berne, B. J. J. Phys. Chem. B 2002,
106, 10748.
(2) (a) Han, J. J.; Wang, W.; Li, A. J. Am. Chem. Soc. 2006, 128, 672 and
references therein. (b) Zych, A. J.; Iverson, B. L. J. Am. Chem. Soc. 2000,
122, 8898. (c) Nguyen, J. Q.; Iverson, B. L. J. Am. Chem. Soc. 1999, 121,
2639.
(3) (a) Gabriel, G. J.; Sorey, S.; Iverson, B. L. J. Am. Chem. Soc. 2005, 127,
2637. (b) Shepherd, N. E.; Abbenante, G.; Fairlie, D. P. Angew. Chem.,
Int. Ed. 2004, 43, 2687. (c) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
(4) (a) Ghadiri, M. R.; Choi, C. J. Am. Chem. Soc. 1990, 112, 1630. (b) Kelso,
M. J.; Hoang, H. N.; Appleton, T. G.; Fairlie, D. P. J. Am. Chem. Soc.
2000, 122, 10488. (c) Nicoll, A. J.; Miller, D. J.; Futter, K.; Ravelli, R.;
Allemann, R. K. J. Am. Chem. Soc. 2006, 128, 9187.
(8) (a) Chang, K.-J.; Kang, B.-N.; Lee, M.-H.; Jeong, K.-S. J. Am. Chem. Soc.
2005, 127, 12215. (b) Suzuki, Y.; Morozumi, T.; Nakamura, H.; Shimo-
mura, M.; Hayashita, T.; Bartsh, R. A. J. Phys. Chem. B 1998, 102, 7910.
(c) Ghosh, S.; Ramakrishnan, S. Macromolecules 2005, 38, 676. (d) Piguet,
C.; Bernardinelli, G.; Hopfgartner, G. Chem. ReV. 1997, 97, 2005 and
references therein. (e) Zhang, F.; Bai, S.; Yap, G. P. A.; Tarwade, V.; Fox,
J. M. J. Am. Chem. Soc. 2005, 127, 10590.
(5) (a) Ritz, T.; Park, S.; Schulten, K. J. Phys. Chem. B 2001, 105, 8259. (b)
Stubbe, J.; van der Donk, W. A. Chem. ReV. 1998, 98, 705 and references
therein. (c) Rasmussen, P. H.; Ramanujam, P. S.; Hvilsted, S.; Berg, R. H.
J. Am. Chem. Soc. 1999, 121, 4738. (d) Alonso, M.; Reboto, V.; Guiscardo,
L.; San, Martin, A.; Rodriguez-Cabello, J. C. Macromolecules 2000, 33,
9480.
(9) Introduction to Molecular Electronics; Petty, M. C., Bryce, M. R., Bloor,
D., Eds.; Oxford University Press: New York, 1995.
(10) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem.
ReV. 2001, 101, 3893 and references within. Also see: Schmuck, C. Angew.
Chem., Int. Ed. 2003, 42, 2448. Huc, I. Eur. J. Org. Chem. 2004, 17.
(11) Rathore, R.; Chebny, V. J.; Abdelwahed, S. A. J. Am. Chem. Soc. 2005,
127, 8012.
(6) Margulis, C. J.; Stern, H. A.; Berne, B. J. J. Phys. Chem. B. 2002, 106,
10748 and references therein.
(7) (a) Balbo, Block, M. A.; Hecht, S. Macromolecules 2004, 37, 4761. (b)
Khan, A.; Kaiser, C.; Hecht, S. Angew. Chem., Int. Ed. 2006, 45, 1878. (c)
McQuade, T. D.; Pullen, A. E.; Swager, T. M. Chem. ReV. 2000, 100, 2537.
(12) (a) Pierre, J. L.; Baret, P.; Chautemps, P.; Armand, M. J. Am. Chem. Soc.
1981, 103, 2986. (b) Pierre, G.; Baret, P.; Chautemps, P.; Pierre, J. L.
Electrochim. Acta 1983, 28, 1269.
9
8458
J. AM. CHEM. SOC. 2007, 129, 8458-8465
10.1021/ja0687522 CCC: $37.00 © 2007 American Chemical Society