Scheme 1. Goals for a Second-Generation Synthesis (dashed
arrow)
Figure 1. Selected cyathane diterpenes.
B2 (7),4 a nonprototypical cyathane.8 Cyathin A3 (2) is a
synthetic precursor to several cyathanes including 3-94b,6,9
and cyathatriol (the 14-â-alcohol derivative of 2)9b has been
proposed10 as a (bio)synthetic precursor of the erinacines.6
In this paper, we report the enantioselective synthesis of
cyathin A3 (2)11 via a second-generation route based on our
earlier synthesis5 of (()-3 (Scheme 1).
The main objectives for our second-generation synthetic
route are outlined in Scheme 1. Developing an enantio-
selective version of the key Diels-Alder (DA) reaction of
12 with 13 was a significant challenge. To the best of our
knowledge, enantioselective DA reactions of Danishefsky-
type dienes (e.g., 13) are unknown,12 presumably due to their
sensitivity to Lewis acids.13 Similarly, enantioselective DA
reactions of quinone dienophiles was an unsolved problem
that only recently has been addressed successfully.14-16
Despite these advances, no examples using quinone 12 with
unsymmetrical dienes have been reported. Indeed, reactions
of 12 gave poor regioselectivities with use of the otherwise
very effective cationic oxazaborolidine-type catalysts devel-
oped by Corey et al.16,17
In a preliminary study, we screened a variety of catalysts
for efficacy in the enantioselective DA reaction of 12 with
13 (Table 1). Diene 13 was not stable to 19 and no DA
adducts were obtained under conditions validated by using
1,3-cyclohexadiene (entry 1).16a Low yields of 14 with
modest ee values were obtained with 2018 using Rawal’s
procedure;12b however, the diene 13 did not survive the
conditions (entries 2 and 3). An excellent yield was obtained
by using the catalyst prepared from BINOL and AlMe3 (1:
1) but with moderate enantioselectivity (entry 4).19
Although 14 was obtained with good ee by using Mikami’s
catalyst (21),15e.20 yields were poor because of diene decom-
position (Table 1, entries 5-8).21 Diene 13 was stable to
(8) The vast majority of cyathanes have a trans 6,7-ring fusion.
(9) (a) Ayer, W. A.; Browne, L. M.; Mercer, J. R.; Taylor, D. R.; Ward,
D. E. Can. J. Chem. 1978, 56, 717-721. (b) Ayer, W. A.; Lee, S. P. Can.
J. Chem. 1979, 57, 3332-3337.
(10) Kenmoku, H.; Sassa, T.; Kato, N. Tetrahedron Lett. 2000, 41, 4389-
4393.
(15) Quinone monoketals: (a) Breuning, M.; Corey, E. J. Org. Lett. 2001,
3, 1559-1562. (b) Ryu, D. H.; Lee, T. W.; Corey, E. J. J. Am. Chem. Soc.
2002, 124, 9992-9993. Naphthoquinones: (c) Kelly, T. R.; Whiting, A.;
Chandrakumar, N. S. J. Am. Chem. Soc. 1986, 108, 3510-3512. (d)
Maruoka, K.; Sakurai, M.; Fujiwara, J.; Yamamoto, H. Tetrahedron Lett.
1986, 27, 4895-4898. (e) Mikami, K.; Motoyama, Y.; Terada, M. J. Am.
Chem. Soc. 1994, 116, 2812-2820. (f) Brimble, M. A.; McEwan, J. F.
Tetrahedron: Asymmetry 1997, 8, 4069-4078.
(16) (a) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388-
6390. (b) Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126,
4800-4802. (c) Hu, Q.-Y.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004,
126, 13708-13713. (d) Liu, D.; Canales, E.; Corey, E. J. J. Am. Chem.
Soc. 2007, 129, 1498-1499.
(17) This problem was solved by using 3-iodo-2,5-dimethylbenzoquinone
(ref 16a).; however, the regioselectiviy obtained with unsymmetrical dienes
is opposite to our requirements
(11) Isolation and structure: (a) Allbutt, A. D.; Ayer, W. A.; Brodie, H.
J.; Johri, B. N.; Taube, H. Can. J. Microbiol. 1971, 17, 1401-1407. (b)
Ayer, W. A.; Taube, H. Can. J. Chem. 1973, 51, 3842-3854.
(12) Enantioselectvive hetero-DA reactions of these dienes are well-
known; for example, see: (a) Jorgensen, K. A. Angew. Chem., Int. Ed.
2000, 39, 3558-3588. For enantioselective DA reactions of 1-amino-3-
silyloxy dienes, see inter alia: (b) Huang, Y.; Iwama, T.; Rawal, V. H. J.
Am. Chem. Soc. 2000, 122, 7843-7844. (c) Thadani, A. N.; Stankovic, A.
R.; Rawal, V. H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5846-5850.
(13) Inokuchi, T.; Okano, M.; Miyamoto, T. J. Org. Chem. 2001, 66,
8059-8063.
(14) (a) Engler, T. A.; Letavic, M. A.; Lynch, K. O., Jr.; Takusagawa,
F. J. Org. Chem. 1994, 59, 1179-1183. (b) White, J. D.; Choi, Y. HelV.
Chim. Acta 2002, 85, 4306-4327. (c) Nicolaou, K. C.; Vassilikogiannakis,
G.; Magerlein, W.; Kranich, R. Chem. Eur. J. 2001, 7, 5359-5371. (d)
Evans, D. A.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10162-10163. (e) Jarvo,
E. R.; Lawrence, B. M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44,
6043-6046. (f) Boezio, A. A.; Jarvo, E. R.; Lawrence, B. M.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2005, 44, 6046-6050.
(18) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J.
Am. Chem. Soc. 1995, 117, 5897-5898.
(19) Ward, D. E.; Souweha, M. S. Org. Lett. 2005, 7, 3533-3536.
(20) The structure of Mikami’s catalyst is unknown. For a review of
Ti(IV)-based enantioselective catalysts, see: Ramon, D. J.; Yus, M. Chem.
ReV. 2006, 106, 2126-2208.
2844
Org. Lett., Vol. 9, No. 15, 2007