Communications
samples were in excellent agreement with those reported in
of the putative “isosojagol” but closely match the reported
spectra of “phaseol”, an isomeric coumestan for which
structure 5 had been proposed.[22] Since the constitution of
our synthetic sample is unambiguous, we must conclude that
the original structure assignments of isosojagol and phaseol
are both incorrect. While our study now shows that “phaseol”
is definitely represented by structure 2 rather than by 5, the
actual constitution of “isosojagol” remains to be elucidated.
the literature (Table 1).[4]
Cleavage of the pivaloyl groups under nonreducing
conditions converted aldehyde 16 into the des-methyl ana-
Table 1: Reference data set of compounds 1–3.
1
1: H NMR (400 MHz, CDCl3): d=7.36 (d, J=8.1 Hz, 1H), 7.04 (d,
J=8.3 Hz, 1H), 6.77 (d, J=8.3 Hz, 1H), 6.45 (dd, J=8.1, 2.4 Hz, 1H),
6.43 (d, J=2.3 Hz, 1H), 5.54 (s, 2H), 5.39 (thept, J=7.3, 1.3 Hz, 1H),
5.26 (brs, 1H), 5.01 (brs, 1H), 3.69 (d, J=7.3 Hz, 2H), 1.89–1.90 (m,
3H), 1.78 ppm (d, J=1.2 Hz, 3H); 13C NMR (100 MHz, CDCl3):
d=156.7, 155.1, 154.5, 152.0, 147.0, 135.3, 121.2, 120.9, 119.2, 116.1,
112.6, 111.2, 110.2, 108.4, 106.2, 103.9, 65.7, 25.8, 23.1, 17.9 ppm; UV
(MeOH/H2O 4:1): lmax =350, 334, 242, 210, 204 nm; MS (EI): m/z (%):
322 (77) [M]+, 266 (100), 237 (6), 152 (5); HRMS (EI): m/z: calcd for
C20H18O4: 322.1205; found: 322.1207
Experimental Section
14:
A Schlenk flask was charged with compound 13 (4.25 g,
5.66 mmol), 4- MS (1.77 g, powdered), and toluene (30 mL). After
addition of PtCl2 (150 mg, 0.56 mmol), the mixture was purged with
CO through a canula for 7 min before it was vigorously stirred at 858C
under an atmosphere of CO (1 atm) for 5.5 h. For work up, the
mixture was filtered through a pad of silica, the filtrate was
evaporated, and the residue purified by flash chromatography
(hexanes/EtOAc, 10:1) to give benzofuran 14 as an off-white foam
2: 1H NMR (400 MHz, [D6]acetone): d=7.92 (d, J=8.6 Hz, 1H), 7.62 (d,
J=8.4 Hz, 1H), 7.05 (d, J=8.3 Hz, 1H), 7.02 (dd, J=8.6, 2.3 Hz, 1H),
6.95 (d, J=2.2 Hz, 1H), 5.43 (thept, J=7.4, 1.4 Hz 1H), 3.70 (d,
J=7.4 Hz, 2H), 1.91–1.92 (m, 3H), 1.69 ppm (d, J=1.1 Hz, 3H);
13CNMR (100 MHz, [D 6]acetone): d=161.9, 160.6, 158.5, 156.1, 156.0,
155.0, 132.6, 123.5, 122.5, 118.9, 116.6, 114.5, 114.4, 113.4, 106.1, 104.1,
103.9, 25.8, 23.4, 18.0 ppm; UV (MeOH): lmax =346, 304, 253, 209 nm;
MS (EI): m/z (%): 337 (13), 336 (54) [M]+, 281 (44), 280 (100), 252 (7);
HRMS (ESI): m/z: calcd for C20H16O5 + Na: 359.0890; found: 359.0894
3: 1H NMR (400 MHz, [D6]acetone): d=7.90 (d, J=8.6 Hz, 1H), 7.66 (d,
J=8.5 Hz, 1H), 7.01 (dd, J=8.6, 2.2 Hz, 1H), 6.95 (d, J=2.2 Hz, 1H),
6.88 (d, J=8.5 Hz, 1H), 3.09 (t, J=6.8 Hz, 2H), 1.96 (t, J=6.8 Hz, 2H),
1.39 ppm (s, 6H); 13CNMR (75 MHz, [D 6]acetone): d=162.0, 160.6,
158.5, 156.1, 155.1, 154.2, 123.5, 119.4, 116.2, 116.2, 114.4, 107.3, 106.0,
104.1, 103.9, 75.6, 32.1, 26.8, 17.3 ppm. MS (EI): m/z (%): 337 (26), 336
(75) [M]+, 319 (4), 280 (100), 252 (7); HRMS (ESI): m/z: calcd for
C20H16O5 + Na: 359.0890; found: 359.0887.
1
(3.56 g, 84%). H NMR (400 MHz, CDCl3): d = 7.65 (d, J = 8.3 Hz,
1H), 7.53 (d, J = 8.4 Hz, 1H), 7.09 (dd, J = 8.4, 2.3 Hz, 1H), 7.03 (d,
J = 2.3 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 4.53 (s, 2H), 3.51–3.55 (m,
2H), 1.45 (s, 9H), 1.38 (s, 9H), 1.17 (s, 9H), 0.92–0.96 (m, 2H),
ꢀ0.01 ppm (s, 9H); 13C NMR (100 MHz, CDCl3): d = 176.4 (2C),
176.2, 155.6, 152.8, 151.0, 150.3, 149.4, 132.3, 126.1, 120.5, 120.3, 118.9,
118.0, 117.0, 116.7, 71.9, 67.7, 62.7, 39.4, 39.2, 39.1, 27.4, 27.1 (2C),
18.3, ꢀ1.4 ppm; MS (EI): m/z (%): 750 (87) [M]+, 722 (11), 666 (35),
638 (26), 633 (16), 553 (12), 548 (15), 464 (27), 380 (31), 85 (12), 73
(25), 57 (100); HRMS (ESI): m/z: calcd for C35H47IO8Si + Na:
773.1977; found: 773.1969; elemental analysis calcd (%) for
C35H47IO8Si: C 56.00, H 6.31; found: C 55.95, H 6.35.
Received: February 28, 2007
Published online: May 10, 2007
Keywords: alkynes · antibiotics · heterocycles · natural products ·
platinum
.
logue of erypoegin F 4, another flavonoid from E. poeppigi-
ana endowed with considerable antimicrobial activity.[4b]
Furthermore, oxidation of 16, deprotection of the ester
moieties, and treatment of the resulting acid 19 with H2SO4/
HOAc led to concomitant lactonization and addition of the
phenolic OH group onto the adjacent prenyl side chain;
sojagol (3) thus formed is a well known phytoalexin originally
isolated from Glycine max (soybeans) and Phaseolus aureus
(mung beans; Scheme 3).[20] Uncoupling of the two cyclization
[1] For an excellent review on the current status of research in the
field of antibiotics, see F. von Nussbaum, M. Brands, B. Hinzen,
S. Weigand, D. Häbich, Angew. Chem. 2006, 118, 5194 – 5254;
Angew. Chem. Int. Ed. 2006, 45, 5072 – 5129, and references
therein.
[2] Leading references: a) G. Belofsky, R. Carreno, K. Lewis, A.
Ball, G. Casadei, G. P. Tegos, J. Nat. Prod. 2006, 69, 261 – 264;
b) T. Hatano, Y. Shintani, Y. Aga, S. Shiota, T. Tsuchiya, T.
Yoshida, Chem. Pharm. Bull. 2000, 48, 1286 – 1292; c) C. Selvam,
S. M. Jachak, R. G. Oli, R. Thilagavathi, A. K. Chakraborti,
K. K. Bhutani, Tetrahedron Lett. 2004, 45, 4311 – 4314, and
references therein.
[3] For the remarkable activity of the prenylated pterocarpene 6
against Streptococcus mutans, the pathogene causing caries, see J.
He, L. Chen, D. Heber, W. Shi, Q.-Y. Lu, J. Nat. Prod. 2006, 69,
121 – 124.
[4] a) H. Tanaka, M. Sato, T. Oh-Uchi, R. Yamaguchi, H. Etoh, H.
Shimizu, M. Sako, H. Takeuchi, Phytomedicine 2004, 11, 331 –
337; b) H. Tanaka, T. Oh-Uchi, H. Etoh, M. Sako, M. Sato, T.
Fukai, Y. Tateishi, Phytochemistry 2003, 63, 597 – 602; c) H.
Tanaka, M. Sato, S. Fujiwara, M. Hirata, H. Etoh, H. Takeuchi,
Lett. Appl. Microbiol. 2002, 35, 494 – 498.
Scheme 3. a) NaClO2, NaH2PO4, tBuOH/H2O, 2-methylbutene, 93%;
b) KOMe, MeOH; c) H2SO4, HOAc, 52% (over two steps); d) DCC,
DMAP, MeCN, 77% (over two steps). DCC=N,N’-dicyclohexylcarbo-
diimide.
[5] A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024 –
15025.
[6] a) For a similar approach, see I. Nakamura, Y. Mizushima, Y.
Yamamoto, J. Am. Chem. Soc. 2005, 127, 15022 – 15023; b) for
events was also possible by treatment of 19 with DCC, which
led to the proposed structure of isosojagol (2).[21] However,
the spectroscopic data of synthetic 2 clearly differ from those
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4760 –4763