Scheme 1. Synthesis of Short Thymine-Thymine Derivative 1
Scheme 2. Synthesis of the Tripodal Thymine Derivative 11
and Boronic Acid 7
as a means to study their inter- and intramolecular hydrogen-
bonding properties and gain further insight into the mech-
anisms behind the assembly of complementary DNA strands.
Our continued interest in DNA structures, including its
use for controlling chemical reactivity and creating self-
assembled nanostructures,5 controlling photosensitized pro-
cesses,6 and detection of DNA,7 has driven us to create an
efficient methodology for the synthesis of N-arylated and
N-alkenylated nucleobases employing the Chan-Lam-
Evans-modified Ullmann coupling.8 Thus, the N-arylated and
N-alkenylated nucleobases are obtained via the direct cou-
pling of protected or masked nucleobase derivatives with
alkenyl or aryl boronic acids. We envisaged that such
artificial molecules incorporating both multiple nucleobases
and an extended rigid aromatic system may be suitable for
the controlled formation of supramolecular structures. Such
structures may be formed on surfaces by Watson-Crick and
other types of hydrogen bonding between the bases or in
solution by a combination of hydrogen bonding and π-stack-
ing. In another application such structures may interact with
DNA strands and form extended helices by Watson-Crick
base pairing in analogy with the structures reported by Iwaura
et al.9
As a starting point in this realm, we now report on the
synthesis of a series of novel rigid aryl or oligo(phenylene
ethynylene) structures connected via bisaryl-like linkages to
multiple nucleobase moieties.
(4) (a) Iwaura, R.; Yoshida, K.; Mitsutoshi, M.; Yase, K.; Shimizu, T.
Chem. Mater. 2002, 14, 3047. (b) Shimizu, T.; Iwaura, R.; Masuda, M.;
Hanada, T.; Yase, K. J. Am. Chem. Soc. 2001, 123, 5947. (c) Iwaura, R.;
Minamikawa, H.; Shimizu, T. J. Colloid Interface Sci. 2004, 277, 299. (d)
Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. ReV. 2005, 105, 1401.
(e) Fuhrhop, J.-H.; Wang, T. Chem. ReV. 2004, 104, 2901. (f) Shimizu, T.
Macromol. Rapid Commun. 2002, 23, 311. (g) Shimizu, T.; Masuda, M. J.
Am. Chem. Soc. 1997, 119, 2812. (h) Itojima, Y.; Ogawa, Y.; Tsuno, K.;
Handa, N.; Yanagawa, H. Biochemistry 1992, 31, 4757.
(5) (a) Gothelf, K. V.; Thomsen, A. H.; Nielsen, M.; Clo´, E.; Brown, R.
S. J. Am. Chem. Soc. 2004, 126, 1044. (b) Nielsen, M.; Thomsen, A. H.;
Clo´, E.; Kirpekar, F.; Gothelf, K. V. J. Org. Chem. 2004, 69, 2240. (c)
Brown, R. S.; Nielsen, M.; Gothelf, K. V. Chem. Commun. 2004, 1464.
(d) Gothelf, K. V.; LaBean, T. H. Org. Biol. Chem. 2005, 3, 4023. (e)
Gothelf, K. V.; Brown, R. S. Chem. Eur. J. 2005, 11, 1062. (f) Nielsen,
M.; Dauksaite, V.; Kjems, J.; Gothelf, K. V. Bioconjugate Chem. 2005,
16, 681.
At the outset, we aimed for the synthesis of a short
conjugated T-T derivative 1, in which the two thymine
moieties are separated only by one benzene ring, which was
accomplished by two sequential Chan-Lam-Evans reactions
(Scheme 1). The previously described N3-benzoyl thymine
29 was converted to N-aryl derivative 3 as previously
described.8 By subjecting 3 to the modified Miyuara protocol
the aryl pinacolboronate 4 was obtained in good yield.10 The
efficient hydrolysis of pinacolboronates can be troublesome.
However, the recently described method employing a solid-
(6) Clo´, E.; Snyder, J. W.; Voigt, N. V.; Ogilby, P. R.; Gothelf, K. V. J.
Am. Chem. Soc. 2006, 128, 4200.
(7) Hansen, J. A.; Mukhopadhyay, R.; Hansen, J. Ø.; Gothelf, K. V. J.
Am. Chem. Soc. 2006, 128, 3860.
(8) Jacobsen, M. F.; Knudsen, M. M.; Gothelf, K. V. J. Org. Chem.
2006, 71, 9183.
(9) Frieden, M.; Giraud, M.; Reese, C. B.; Song, Q. J. Chem. Soc., Perkin
Trans. 1 1998, 2827.
(10) Zhu, L.; Duquette, J.; Zhang, M. J. Org. Chem. 1999, 68, 3729.
2852
Org. Lett., Vol. 9, No. 15, 2007