LETTER
New Formal Synthesis of Kainic Acid
1523
(8) For some recent syntheses of kainic acid: (a)Nakagawa, H.;
Sugahara, T.; Ogasawara, K. Org. Lett. 2000, 2, 3181.
(b) Clayden, J.; Menet, C. J.; Mansfield, D. J. Chem.
Commun. 2002, 38. (c) Clayden, J. C.; Menet, C. J.;
Tchabanenko, K. Tetrahedron 2002, 58, 4727. (d) Trost, B.
M.; Rudd, M. T. Org. Lett. 2003, 5, 1467. (e) Hoppe, D.;
Montserrat Martinez, M. Org. Lett. 2004, 6, 3743.
(f) Hodgson, D. M.; Hachisu, S.; Andrews, M. D. Org. Lett.
2005, 7, 815. (g) Lautens, M.; Scott, M. E. Org. Lett. 2005,
7, 3045. (h) Anderson, J. C.; O’Loughlin, J. M. A.; Tornos,
J. A. Org. Biomol. Chem. 2005, 3, 2741. (i) Morita, Y.;
Tokuyama, H.; Fukuyama, T. Org. Lett. 2005, 7, 4337.
(j) Hodgson, D. M.; Hachisu, S.; Andrews, M. D. J. Org.
Chem. 2005, 70, 8866. (k) Poisson, J.-F.; Orellana, A.;
Greene, A. E. J. Org. Chem. 2005, 70, 10860. (l) Pandey, S.
K.; Orellana, A.; Greene, A. E.; Poisson, J.-F. Org. Lett.
2006, 8, 5665. (m) Chalker, J.; Yang, A.; Deng, K.; Cohen,
T., unpublished results; private communication from T.
Cohen in the form of a lecture in Paris, 2006.
procedure, a four-step sequence can convert pyrrolidone 1
into kainic acid in an overall 73% yield (Scheme 7).
Moreover, the two enantiomers may be further separated
via a (+)-ephedrine-mediated resolution, according to
Oppolzer’s protocol.21
EtO2C
EtO2C
a
O
47%
O
N
N
H
PMB
9
1
4 steps
73% overall
ref. 12
HOOC
(9) (a) Tremblay, J.-F. Chem. Eng. News 2000, 78, 14.
(b) Tremblay, J.-F. Chem. Eng. News 2000, 78, 131.
(10) Poli, G.; Giambastiani, G.; Pacini, B.; Porcelloni, M. J. Org.
Chem. 1998, 63, 804.
HOOC
N
H
kainic acid
(11) Madec, D.; Prestat, G.; Martini, E.; Fristrup, P.; Poli, G.;
Norrby, P.-O. Org. Lett. 2005, 7, 995.
(12) Compound 1 (66% ee) was obtained in seven steps and 16%
global yield from commercially available compounds: Xia,
Q.; Ganem, B. Org. Lett. 2001, 3, 485.
(13) Hecht, S.; Amslinger, S.; Jauch, J.; Kis, K.; Trentinaglia, V.;
Adam, P.; Eizenreich, W.; Bacher, A.; Rohdich, F.
Tetrahedron Lett. 2002, 43, 8929.
(14) (a) Large-scale preparation of 4-chloro-2-methylbut-2-en-1-
ol from 2-methyl-2-vinyl oxirane and TiCl4 (see ref. 13)
afforded a poor (27%) yield. Alternatively, treatment of the
same oxirane with CuCl2–LiCl (see ref. 13) gave the
corresponding aldehyde in 68% yield. NaBH4 reduction of
the latter gave the desired alcohol in 43% yield, see: Fox, T.
D.; Poulter, C. D. J. Org. Chem. 2002, 67, 5009.
Scheme 7 Reagents and conditions: (a) (NH4)2Ce(NO3)6 (4 equiv),
MeOH, 0 °C then r.t., 16 h.
In summary, the above described sequence represents a
successful eleven-step formal synthesis of kainic acid.
The key cyclization step was accomplished through an in-
tramolecular palladium-catalyzed allylic alkylation from
an allylic sulfone. Further functionalization of the result-
ing pyrrolidone exploited a stereoconvergent NHC–CuH-
mediated conjugate reduction. Extension of the present
strategy to an enantioselective synthesis of (–)-kainic acid
is currently under investigation.
(b) Acetylation with Ac2O–Et3N gave 1-acetoxy-4-chloro-2-
methyl-2-butene in 29% yield (Scheme 8).
Acknowledgment
TiCl4, CH2Cl2
O
CNRS and UPMC are acknowledged for financial support. We
thank also Dr S. Roland (UPMC) for fruitful discussions concerning
NHC–copper chloride catalyzed conjugate reductions. The spon-
sorship of COST Action D40 ‘Innovative Catalysis: New Processes
and Selectivities’ is kindly acknowledged.
HO
Cl
–80 °C
27%
THF
–20 °C
43%
80 °C
AcOEt
68%
CuCl2
LiCl
NaBH4
O
Cl
Scheme 8
References and Notes
(1) Murukami, S.; Takemoto, T.; Shimizu, Z. J. Pharm. Soc.
Jpn. 1953, 73, 1026.
(2) Hollmann, M.; Heinemann, S. Annu. Rev. Neurosci. 1994,
17, 31.
(15) For some examples concerning the use of allylic sulfones in
palladium-catalyzed allylic alkylation, see: (a) Trost, B. M.;
Schmuff, N. R.; Miller, J. M. J. Am. Chem. Soc. 1980, 102,
5979. (b) Clayden, J.; Julia, M. J. Chem. Soc., Chem.
Commun. 1994, 1905. (c) Orita, A.; Watanabe, A.;
(3) Cantrell, B. E.; Zimmerman, D. M.; Monn, J. A.; Kamboj, R.
K.; Hoo, K. H.; Tizzano, J. P.; Pullar, I. A.; Farrell, L. N.;
Bleakman, D. J. Med. Chem. 1996, 39, 3617.
(4) Coyle, J. T.; Schwarcz, R. Nature (London) 1976, 263, 244.
(5) Sperk, G. Prog. Neurobiol. (Oxford) 1994, 42, 1.
(6) Oppolzer, S.; Thirring, K. J. J. Am. Chem. Soc. 1982, 104,
4978.
(7) For reviews concerning previous syntheses of kainic acid,
see: (a) Parsons, A. F. Tetrahedron 1996, 52, 4149.
(b) Clayden, J.; Read, B.; Hebditch, K. R. Tetrahedron 2005,
61, 5713. (c) Rosini, G. Chim. Ind. (Milan) 2001, 83, 75.
Tsuchiya, H.; Otera, J. Tetrahedron 1999, 55, 2889.
(d) Cheng, W.-C.; Halm, C.; Evarts, J. B.; Olmstead, M. M.;
Kurth, M. J. J. Org. Chem. 1999, 64, 8557. (e) Deng, K.;
Chalker, J.; Yang, A.; Cohen, T. Org. Lett. 2005, 7, 3637.
(16) (a) Truce, W. E.; Goralski, C. T.; Christensen, L. W.; Bavry,
R. H. J. Org. Chem. 1970, 35, 4217. (b) Min, J. H.; Lee, J.
S.; Yang, J. D.; Koo, S. J. Org. Chem. 2003, 68, 7925.
(17) Procedure for the Palladium-Catalyzed Cyclization
Reaction: To a solution of tetrabutylammonium bromide
(10 mol%) in CH2Cl2 (1 mL) were added in this order
allylpalladium chloride dimer (5 mol%) and dppe (12.5
mol%). After 5 min stirring, to the thus formed catalytic
Synlett 2007, No. 10, 1521–1524 © Thieme Stuttgart · New York