3-one 9. The resulting product 9 was simply filtered through
a plug of Celite to remove the excess solid reagent. It is
worth noting that the preparation of the thiophen-3-one 9 is
highly efficient and easily scalable without much complica-
tion.8 The thiophen-3-one 9 is next converted to the corre-
sponding sulfoxide 10 and sulfone derivative 11 by using
m-chloroperbenzoic acid and Oxone, respectively. While
attempted reduction of the thiophen-3-one 9 was unsuccessful
under various conditions,9 the reduction of thiophen-3-one
oxide 10 and dioxide 11 with sodium borohydride gave clean
reduction products (12 and 13) in excellent yield and
selectivity.
isocyanate and potassium tert-butoxide.10 This tandem in-
tramolecular Michael reaction/fragmentation/Michael reac-
tion allows a facile entry to the requisite core of biotin.11
Moreover, intermediates 14, 16, and 17 in Scheme 2 can be
Scheme 2. Synthesis of Biotin Skeleton
Scheme 1. Synthesis of Thiophen-3-one Derivatives
isolated and the stepwise reactions proceed in excellent yields
(see the Supporting Information). Although the reaction gave
low diastereoselectivity at the C2 for sulfoxide 6 (sulfone
13 gave a 2R-H epimer 4 as the sole product),12 the high
chemical yield and the efficient chemical transformation are
noteworthy.
To access N,N′-dibenzyl-2-epi-biotin 2,13 the deoxygen-
ation of the 2,3-trans-sulfoxide 6 was performed with use
of phosphorus trichloride in dichloromethane at low tem-
perature.14 Likewise, the 2,3-cis-sulfoxide 6a yielded N,N′-
dibenzyldeoxybiotin 1811 after reduction of a mixture of
sulfide 18 and alkene 19. A similar strategy has been applied
to cis-sulfoxide 12 to give N,N′-dibenzyldeoxybiotin sul-
foxides (5 and 5a) (see the Supporting Information). The
debenzylation of the ureas (2 and 18) can be effected by the
Hoffmann-La Roche protocol.15
The alcohols (12 and 13) were then converted to bicyclic
urea (4 and 6) through a successive treatment of benzyl
(2) For the synthesis of biotin, see: (a) Chavan, S. P.; Chittiboyina, A.
G.; Ramakrishna, G.; Tejwani, R. B.; Ravindranathan, T.; Kamat, S. K.;
Rai, B.; Sivadasan, L.; Balkrishnan, K.; Ramalingam, S.; Deshpande, V.
H. Tetrahedron 2005, 61, 9273. (b) Chen, F.-E.; Chen, X.-X.; Dai, H.-F.;
Kuang, Y.-Y.; Xie, B.; Zhao, J.-F. AdV. Synth. Catal. 2005, 347, 549. (c)
Mori, Y.; Seki, M. Synlett 2005, 2233. (d) Chavan, S. P.; Chittiboyina, A.
G.; Ravindranathan, T.; Kamat, S. K.; Kalkota, U. R. J. Org. Chem. 2005,
70, 1901. (e) Chavan, S. P.; Ramakrishna, G.; Gonnade, R. G.; Bhadbhade,
M. M. Tetrahedron Lett. 2004, 45, 7307. (f) Seki, M.; Hatsuda, M.; Mori,
Y.; Yoshida, S.; Yamada, S.; Shimizu, T. Chem. Eur. J. 2004, 10, 6101.
(g) Kimura, M.; Seki, M. Tetrahedron Lett. 2004, 45, 1635. (h) Seki, M.;
Kimura, M. Yuki Gosei Kagaku Kyokaishi 2004, 62, 882. (i) Chen, F.-E.;
Dai, H.-F.; Kuang, Y.-Y.; Jia, H.-Q. Tetrahedron: Asymmetry, 2003, 14,
3667. (j) Seki, M.; Kimura, M.; Hatsuda, M.; Yoshida, S.; Shimizu.
Tetrahedron Lett. 2003, 44, 8905. (k) Chen, F.-E.; Yuan, J.-L.; Dai, H.-F.;
Kuang, Y.-Y.; Chu, Y. Synthesis 2003, 2155. (l) Shimizu, T.; Yakugaku
Zasshi 2003, 123, 43. (m) Seki, M.; Mori, Y.; Hatsuda, M.; Yamada, S. J.
Org. Chem. 2002, 67, 5527. (n) Shimizu, T.; Seki, M. Tetrahedron Lett.
2002, 43, 1039. (o) Mori, Y.; Seki, M. Heterocycles 2002, 58, 125. (p)
Seki, M.; Hatsuda, M.; Mori, Y.; Yamada, S. Tetrahedron Lett. 2002, 43,
3269. (q) Seki, M.; Shimizu, T.; Inubushi, K. Synthesis 2002, 361. (r)
Chavan, S. P.; Tejwani, R. B.; Ravindranathan, T. J. Org. Chem. 2001, 66,
6197. (s) Choi, C.; Tian, S.-K.; Deng, L. Synthesis 2001, 1737. (t) Shimizu,
T.; Seki, M. Tetrahedron Lett. 2000, 41, 5099. (u) Shimizu, M.; Nishigaki,
Y.; Wakabayashi, A. Tetrahedron Lett. 1999, 40, 8873. (v) Zhou, Z.; Yang,
H. Huaxue Jinzhan 1998, 10, 319. For a review on the synthesis of biotin,
see: (w) DeClercq, P. J. Chem. ReV. 1997, 97, 1755.
(4) Desarnaud, F.; Marie, J.; Larguier, R.; Lombard, C.; Jard, S.;
Bonnafous, J.-C. J. Chromatogr. 1992, 603, 95 and reference cited therein.
(5) For the relative avidin binding affinity of biotin and its metabolites,
see: (a) Sachon, E.; Tasseau, O.; Lavielle, S.; Sagan, S.; Bolbach, G. Anal.
Chem. 2003, 75, 6536. (b) Zempleni, J.; Mock, D. M. J. Nutr. 1999, 129,
494S. (c) Finn, F. M.; Yamanouchi, K.; Titus, G.; Hofmann, K. Bioorg.
Chem. 1995, 23, 152.
(6) Oh, K. Tetrahedron Lett. 2007, 48, 3685.
(7) Benson, W. R.; Pohland, A. E. J. Org. Chem. 1964, 29, 385.
(8) More detailed results will be published elsewhere.
(9) Low yield of the thiophene, presumably after dehydration, was
obtained.
(10) For intramolecular conjugate addition of carbamates, see: (a) Wee,
A. G. H.; McLeod, D. D.; Rankin, T. J. Heterocycles 1998, 48, 2263. (b)
Clayden, J.; Nelson, A.; Warren, S. Tetrahedron Lett. 1997, 38, 3471. (c)
Hirama, M.; Hioki, H.; Ito, S.; Kabuto, C. Tetrahedron Lett. 1988, 29, 3121.
(d) Hirama, M.; Hioki, H.; Ito, S. Tetrahedron Lett. 1988, 29, 3125.
(11) For the synthesis of N,N′-dibenzyl-cis-ureylenesulfone from 2,5-
dihydrothiophene S,S-dioxide, see: (a) Kotake, H.; Inomata, K.; Murata,
Y.; Kinoshita, H.; Katsuragana, M. Chem. Lett. 1976, 1073 (the reaction
of 3,4-dibromosulfolane with benzylamine). (b) Ellis, F.; Sammes, P. G. J.
Chem. Soc., Perkin Trans. 1 1972, 2866 (the intramolecular conjugate
addition of the carbamate from 3,4-bromohydrinsulfolane).
(12) For the stereochemical assignment of hexahydrothienoimidazolone
derivatives, see the Supporting Information.
(3) (a) van Werven, F. J.; Timmers, H. T. Nucleic Acids Res. 2006, 34,
e33. (b) Nguyen, G. H.; Milea, J. S.; Rai, A.; Smith, C. L. Biomol. Eng.
2005, 22, 147. (c) Chen, I.; Ting, A. Y. Curr. Opin. Biotechnol. 2005, 16,
35. (d) de Boer, E.; Rodriguez, P.; Bonte, E.; Krijgsveld, J.; Katsantoni,
E.; Heck, A.; Grosveld, F.; Strouboulis, J. Proc. Natl Acad. Sci. U.S.A.
2003, 100, 7480 and references cited therein.
(13) Bates, H.; Rosenblum, S. J. Org. Chem. 1986, 51, 3447.
(14) Cere, V.; Paolucci, C.; Pollicino, S.; Sandri, E.; Fava, A. J. Org.
Chem. 1986, 51, 4880.
2974
Org. Lett., Vol. 9, No. 16, 2007