Communications
Cohn, C. Lefkowitz, J. Org. Chem. 2006, 71, 3285 – 3286, and
references therein.
[5] a) N. Hori, H. Matsukura, G. Matsuo, T. Nakata, Tetrahedron
Lett. 1999, 40, 2811 – 2814; b) G. Matsuo, H. Kadohama, T.
Nakata, Chem. Lett. 2002, 148 – 149.
[6] a) H. Lee, H. Kim, T. Yoon, B. Kim, S. Kim, H. Kim, D. Kim, J.
Org. Chem. 2005, 70, 8723 – 8729; b) in the case of 5’a, the
enantiomer of the compound actually prepared is shown for
comparison purposes.
[7] I. Kadota, H. Uyehara, Y. Yamamoto, Tetrahedron 2004, 60,
7361 – 7365.
Scheme 5. Completion of the synthesis of (+)-microcladallene B (1):
[8] Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett. 1982,
23, 885 – 888.
[9] a) G. C. Fu, R. H. Grubbs, J. Am. Chem. Soc. 1992, 114, 5426 –
5427; b) R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res.
1995, 28, 446 – 452; c) for the synthesis of a,a’-trans-oxocene
natural products by RCM, see ref. [2a,b].
[10] a) E. Winterfeldt, Chem. Ber. 1964, 97, 1952 – 1958; b) E.
Winterfeldt, H. Preuss, Chem. Ber. 1966, 99, 450 – 458.
[11] To the best of our knowledge, this pyranoannulation constitutes
the first example of the use of the protocol of Nakata and co-
workers for the synthesis of a cis-fused bicyclic structure.
[12] a) K. Soai, A. Ookawa, J. Org. Chem. 1986, 51, 4000 – 4005;
b) the free hydroxy group at C12 in 2 was found to be necessary
for the efficient chemoselective reduction of the ester function-
ality in the presence of the a-alkoxy amide group, possibly by
internal delivery of the hydride.
ꢀ ꢁ
a) BF3·Et2O, TIPS C CH, nBuLi, THF, ꢀ788C, 2 h, 84%; b) L-selec-
tride, THF, ꢀ788C, 1 h, 91%; c) TBAF, THF, 08C!RT, 1 h, 85%;
d) 2,4,6-iPr3C6H2SO3H, DIAD, Ph3P, Et3N, THF, 608C, 2 h, 56%;
e) LiBr, CuBr, THF, 608C, 8 h, 73%. DIAD=diisopropylazodicarboxy-
late, TBAF=tetrabutylammonium fluoride, Tris=2,4,6-triisopropylben-
zenesulfonyl.
step by using the modification by Anderson et al. of the
procedure described by Galynker and Still.[18] Finally, SN2’
displacement of the trisylate group upon the exposure of 16 to
LiCuBr2 delivered (+)-microcladallene B (1) in 73% yield
along with a small amount of the corresponding product of
SN2 substitution.[19] The optical-rotation data for synthetic
(+)-microcladallene B were in close agreement with those of
the natural product: [a]2D0 = + 93.2 (c = 0.14, Me2CO; lit.[1]:
[a]2D0 = + 96.0 (c = 0.50, Me2CO)).[20,21]
In conclusion, we have completed an asymmetric total
synthesis of (+)-microcladallene B (1) in 18 steps and 3%
overall yield from the readily available aldehyde 6 in a
substrate-controlled fashion. Highlights of the synthesis
include a novel dianion alkylation for the synthesis of the
a,a’-anti substrate for RCM and a novel application of NALG
methodology for the demanding stereoselective introduction
of the bromine substituent at C12. The application of the
NALG halogenation to the synthesis of other natural
products is under investigation in our laboratories.
[13] The treatment of the mesylate derived from alcohol 10 with
nBu4NBr in xylene at reflux according to the double-inversion
protocol of Masamune and co-workers produced the corre-
sponding bromide in only moderate (20%) yield as a 2:1 mixture
of
a and b isomers, along with a significant amount of
elimination products: a) A. Fukuzawa, H. Sato, T. Masamune,
Tetrahedron Lett. 1987, 28, 4303 – 4306; b) D. Kim, I. H. Kim,
Tetrahedron Lett. 1997, 38, 415 – 416.
[14] P. A. Grieco, S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41,
1485 – 1486.
[15] H. Kim, W. J. Choi, J. Jung, S. Kim, D. Kim, J. Am. Chem. Soc.
2003, 125, 10238 – 10240.
[16] M. Yamaguchi, I. Hirao, Tetrahedron Lett. 1983, 24, 391 – 394.
[17] a) J. S. Clark, A. B. Holmes, Tetrahedron Lett. 1988, 29, 4333 –
4336; b) K. Tsushima, A. Murai, Tetrahedron Lett. 1992, 33,
4345 – 4348.
[18] a) N. G. Anderson, D. A. Lust, K. A. Colapret, J. H. Simpson,
M. F. Malley, J. Z. Gougoutas, J. Org. Chem. 1996, 61, 7955 –
7958; b) I. Galynker, W. C. Still, Tetrahedron Lett. 1982, 23,
4461 – 4464; c) to the best of our knowledge, this reaction is the
first example of trisylation under Mitsunobu conditions.
[19] a) C. J. Elsevier, P. Vermeer, A. Gedanken, W. Runge, J. Org.
Chem. 1985, 50, 364 – 367; b) H. H. Mooiweer, C. J. Elsevier, P.
Wijkens, P. Vermeer, Tetrahedron Lett. 1985, 26, 65 – 66; c) T . A.
Grese, K. D. Hutchinson, L. E. Overman, J. Org. Chem. 1993, 58,
2468 – 2477.
Received: February 26, 2007
Published online: May 11, 2007
Keywords: bromination · dianion alkylation · natural products ·
.
nucleophile-assisting leaving groups · total synthesis
[1] D. J. Kennedy, I. A. Selby, H. J. Cowe, P. J. Cox, R. H. Thomson,
J. Chem. Soc. Chem. Commun. 1984, 153 – 155.
[2] For total syntheses of a,a’-trans-oxocene natural products, see:
a) M. T. Crimmins, E. A. Tabet, J. Am. Chem. Soc. 2000, 122,
5473 – 5476; b) K. Fujiwara, S.-I. Souma, H. Mishima, A. Murai,
Synlett 2002, 1493 – 1495; c) T. Saitoh, T. Suzuki, M. Sugimoto,
H. Hagiwara, T. Hoshi, Tetrahedron Lett. 2003, 44, 3175 – 3178;
d) M. Sugimoto, T. Suzuki, H. Hagiwara, T. Hoshi,Tetrahedron
Lett. 2007, 48, 1109 – 1112; e) H. Kim, H. Lee, D. Lee, S. Kim, D.
Kim, J. Am. Chem. Soc. 2007, 129, 2269 – 2274.
[3] a) A. P. Kozikowski, J. Lee, Tetrahedron Lett. 1988, 29, 3053 –
3056; b) A. P. Kozikowski, J. Lee, J. Org. Chem. 1990, 55, 863 –
870; c) H. M. Sheldrake, C. Jamieson, J. W. Burton, Angew.
Chem. 2006, 118, 7357 – 7360; Angew. Chem. Int. Ed. 2006, 45,
7199 – 7202.
[20] We were unable to obtain the spectra of the natural product from
Dr. D. J. Kennedy as a result of his retirement.
[21] Characterization of synthetic 1: Rf = 0.21 (hexane/ethyl acetate,
10:1); m.p. 84–888C; 1H NMR (500 MHz, CDCl3): d = 6.11 (1H,
dd, J = 5.9, 2.8 Hz, 1H), 5.85–6.00 (m, 2H), 5.81 (ddd, J = 17.2,
10.3, 10.3 Hz, 1H), 5.41–5.45 (m, 2H), 5.32 (d, J = 10.5 Hz, 1H),
4.83 (ddd, J = 7.2, 3.5, 3.5 Hz, 1H), 4.08 (ddd, J = 12.4, 10.1,
4.3 Hz, 1H), 3.89 (dd, J = 10.2, 6.8 Hz, 1H), 3.83 (bs, 1H), 3.69
(dd, J = 9.8, 4.6 Hz, 1H), 2.65–2.67 (m, 1H), 2.60 (ddd, J = 12.8,
9.8, 3.0 Hz, 1H), 2.52 (ddd, J = 7.8, 3.8, 3.8 Hz, 1H), 2.27–2.33
(m, 2H), 2.17 ppm (ddd, J = 12.7, 11.5, 3.2 Hz, 1H); 13C NMR
(125 MHz, CDCl3): d = 202.6, 135.4, 129.3, 128.7, 119.4, 100.0,
83.3, 80.6, 74.9, 74.4, 69.9, 48.0, 43.2, 31.7, 30.2 ppm.
[4] a) S. D. Lepore, A. K. Bhunia, P. Cohn, J. Org. Chem. 2005, 70,
8117 – 8121; b) S. D. Lepore, A. K. Bhunia, D. Mondal, P. C.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4726 –4728