Communications
tion from this nickeladihydroazepine gives a 1,2-dihydropyr-
[1] Alkyne with an aldehyde/ketone: a) E. Oblinger, J. Montgom-
ery, J. Am. Chem. Soc. 1997, 119, 9065; b) W.-S. Huang, J. Chan,
T. F. Jamison, Org. Lett. 2000, 2, 4221; c) Y. Ni, K. K. D.
Amarasinghe, J. Montgomery, Org. Lett. 2002, 4, 1743;
d) K. M. Miller, W.-S. Huang, T. F. Jamison, J. Am. Chem. Soc.
2003, 125, 3442; e) G. M. Mahandru, G. Liu, J. Montgomery, J.
Am. Chem. Soc. 2004, 126, 3698; f) K. M. Miller, T. F. Jamison, J.
Am. Chem. Soc. 2004, 126, 15342; g) M. Murakami, S. Ashida, T.
Matsuda, J. Am. Chem. Soc. 2005, 127, 6932.
[2] Alkyne with an imine: a) S. J. Patel, T. F. Jamison, Angew. Chem.
2003, 115, 1402; Angew. Chem. Int. Ed. 2003, 42, 1 364; b) S. J.
Patel, T. F. Jamison, Angew. Chem. 2004, 116, 4031; Angew.
Chem. Int. Ed. 2004, 43, 3941.
[3] Two alkynes with an aldehyde/ketone: a) T. Tsuda, T. Kiyoi, T.
Miyane, T. Saegusa, J. Am. Chem. Soc. 1988, 110, 8570; b) T. N.
Tekevac, J. Louie, Org. Lett. 2005, 7, 4037; c) M. Murakami, S.
Ashida, T. Matsuda, J. Am. Chem. Soc. 2006, 128, 2166.
[4] Nickelalactams formed from an alkyne, an isocyanate, and
nickel(0): a) H. Hoberg, B. W. Oster, J. Organomet. Chem. 1982,
234, C35; b) H. Hoberg, B. W. Oster, J. Organomet. Chem. 1983,
252, 359.
idine and regenerates nickel(0). The previously reported
nickel-catalyzed [2+2+2] cycloaddition of alkynes with a
ketone might also proceed by a similar reaction path.[3]
In conclusion, we have demonstrated that the oxidative
cyclization of an imine and an alkyne with nickel(0) gives a
nickelapyrroline and that subsequent insertion of a second
alkyne gives a nickeladihydroazepine. This complex then
undergoes reductive elimination to give a 1,2-dihydropyr-
idine. We have developed this sequential reaction process into
a nickel-catalyzed [2+2+2] cycloaddition of two alkynes and
an imine that yields 1,2-dihydropyridines. This is the first
example of the selective formation of a 1,2-dihydropyridine in
the presence of a transition-metal catalyst. Further studies on
the oxidative cyclization of an imine and unsaturated carbon–
carbon bonds with nickel(0), and on the application of this
process to other catalytic reactions are in progress in our
group.
[5] A nickel-catalyzed reaction of two alkynes and a carbodiimide to
give
a 2-imino-1,2-dihydropyridine has been reported: H.
Experimental Section
Hoberg, G. Burkhart, Synthesis 1979, 525.
Synthesis of 3a: 2-Butyne (276.4 mg, 400 mL, 5.11 mmol) was added
to a solution of [Ni(cod)2] (274.8 mg, 1.00 mmol), PCy3 (288.4 mg,
1.00 mmol), and 1 (244.0 mg, 0.99 mmol) in 5 mL of toluene at room
temperature. The reaction mixture was stirred for 1h, whereupon the
color changed from red to dark red. The reaction mixture was then
concentrated in vacuo to give a red solid. This solid was washed with
hexane to give 467.5 mg of complex 3a (orange solid) in 68% yield.
1H NMR (400 MHz, C6D6): d = 0.87–1.96 (m, 39H; Cy and signals for
[6] a) S. Ogoshi, M.-a. Oka, H. Kurosawa, J. Am. Chem. Soc. 2004,
126, 11082; b) S. Ogoshi, M. Ueta, T. Arai, H. Kurosawa, J. Am.
Chem. Soc. 2005, 127, 12810; c) S. Ogoshi, K.-i. Tonomori, M.-a.
Oka, H. Kurosawa, J. Am. Chem. Soc. 2006, 128, 7077; d) S.
Ogoshi, M. Nagata, H. Kurosawa, J. Am. Chem. Soc. 2006, 128,
5350.
[7] Crystal data for 3a: C39H56NNiO2PS: M = 692.61, brown,
monoclinic, P21/n (no. 14), a = 10.1244(3), b = 21.5519(6), c =
=
=
=
NiC(Me) C(Me)C(Me) (1.09, 3H), NiC(Me) (1.69, 3H), and
17.5944(5) , b = 102.400(1)8, V= 3749.5(2) 3, Z = 4, 1calcd
=
=
NiC(Me) C(Me) (1.95, 3H)), 2.38 (br.s, 3H, Cy), 2.55 (br.s, 3H,
1.227 gcmÀ3, T= 08C, R (Rw) = 0.054 (0.069).
=
NiC(Me) C(Me)C(Me) = C(Me)), 5.07 (s, 1H, CHPh), 6.97–7.02 (m,
[8] K.-i. Fujita, M. Yamashita, F. Puschmann, M. M. Alvarez-
Falcon, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006,
128, 9044.
4H), 7.11 (t, JH,H = 7.6 Hz, 2H), 7.31(br.s, 2H), 8.29 ppm (br.d, JH,H
=
6.5 Hz, 2H). 13C NMR (100 MHz, C6D6): d = 15.6 (s), 18.2 (s), 22.2 (s),
24.8 (d, JC,P = 6.1Hz; Cy), 27.2 (s), 28.4 (d, JC,P = 9.9 Hz; Cy), 28.5 (d,
[9] Crystal data for 4: C49H77NNiO2P2S, M = 864.86, brown, mono-
clinic, P21/n (no. 14), a = 10.8288(3), b = 17.5527(4), c =
JC,P = 9.9 Hz; Cy), 30.2 (s), 31.0 (s), 33.6 (d, JC,P = 17.5 Hz; Cy), 60.2 (s,
CHPh), 125.5 (s), 126.5 (s), 127.5 (s), 127.7 (s), 128.3 (s), 128.5 (s),
128.7 (s), 129.1(s), 131.3 (s), 135.5 (s), 135.9 (s), 146.0 ppm (s).
31P NMR (109.4 MHz, C6D6): d = 31.3 ppm (s). Elemental analy-
sis (%) calcd for C39H56NNiO2PS: C 67.63, H 8.15, N 2.02; found: C
67.36, H 8.21, N 2.12.
25.9319(8) , b = 99.124(1)8, V= 4866.6(2) 3, Z = 4, 1calcd
=
1.180 gcmÀ3, T= 08C, R (Rw) = 0.060 (0.097). CCDC 637051
(3a) and CCDC 637052 (4) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
Received: February 14, 2007
Published online: May 24, 2007
[10] The catalytic formation of a 1,2-dihydropyridine from two
alkynes and an imine has been reported: P. A. Wender, T. M.
Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154.
Keywords: alkynes · cycloaddition · imines · metallacycles ·
.
nickel
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4930 –4932