J. Murga et al. / Tetrahedron Letters 45 (2004) 7499–7501
7501
4. The synthesis of an intermediate related to fragment A has
been recently reported: Chng, S.-S.; Xu, J.; Loh, T.-P.
Tetrahedron Lett. 2003, 44, 4997–5000.
19ppm. This indicates that it is the acetonide of a syn-1,
3-diol13 and can only be that indicated below, as the
internal acetonide would necessarily be anti.
5. (a) Brown, H. C.; Ramachandran, P. V. J. Organomet.
Chem. 1995, 500, 1–19; (b) Ramachandran, P. V. Aldri-
chim. Acta 2002, 35, 23–35.
6. (a) Evans, D. A. Aldrichim. Acta 1982, 15, 23–32; (b) Kim,
B. M.; Williams, S. F.; Masamune, S. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Winterfeldt,
E., Eds.; Pergamon: Oxford, 1993; Vol. 2, pp 239–276; See
also: Cowden, C. J.; Paterson, I. Org. React. 1997, 51,
1–200.
13. Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc.
Chem. Res. 1998, 31, 9–17.
´
14. Experimental procedure taken from: Walba, D. M.;
Thurmes, W. N.; Haltiwanger, R. C. J. Org. Chem.
1988, 53, 1046–1056. MeerweinÕs salt (trimethyloxo-
nium tetrafluoroborate) proved ineffective in the present
case.
15. Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.;
Yamada, H.; Nishizawa, M. Tetrahedron 1994, 50,
13369–13376.
7. Nicolaou, K. C.; Namoto, K.; Ritzen, A.; Ulven, T.; Shoji,
M.; Li, J.; DÕAmico, G.; Liotta, D.; French, C. T.;
Wartmann, M.; Altmann, K. H.; Giannakakou, P. J. Am.
Chem. Soc. 2001, 123, 9313–9323; However, we have
prepared 2 via an adaptation of one route described for
the TBS analogue: Chandrasekhar, S.; Reddy, C. R.
Tetrahedron: Asymmetry 2002, 13, 261–268.
8. Sibi, M. P. Org. Prep. Proc. Int. 1993, 25, 15–
40.
16. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, third ed.; John Wiley and Sons: New
York, 1999, pp 27–33.
9. Low yields and conversion rates were observed in all
attempts at direct formation of 9 from oxazolidinone 8
under standard conditions (MeNHOMe, AlMe3). There-
fore, we resorted to the alternative method described in
Scheme 3.
10. Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E.
J. Am. Chem. Soc. 2001, 123, 10840–10852; See also: Ooi,
T.; Morikawa, J.; Uraguchi, D.; Maruoka, K. Tetrahedron
Lett. 1999, 40, 2993–2996.
11. Prior to the use of Bu3SnH/Me2AlCl, we tested reductants
such as DIBAL and L-Selectride, which have proven
useful in closely related instances: Boger, D. L.; Curran, T.
T. J. Org. Chem. 1992, 57, 2235–2244. However, they
displayed a low stereoselectivity in the present case (about
2:1).
12. The configuration of the stereocenter created in this step
was established by total desilylation of 11 with TBAF and
treatment of the resulting tetraol with 2,2-dimethoxyprop-
ane and an acid catalyst. This gave a monoacetonide i,
which showed two methyl 13C NMR signals at ca. 30 and
17. Oil; [a]D ꢀ3.1 (c 0.86, CHCl3), 1H NMR (500MHz) d 5.82
(1H, m, H-2), 5.10 (1H, dd, J = 17, 1.5Hz, H-1t), 5.04 (1H,
dd, J = 10, 1Hz, H-1c), 4.65 (2H, AB system, J = 7Hz,
MOM), 3.81 (1H, dd, J = 5.8, 1.6Hz, H-10), 3.70 (1H, m,
H-8), 3.47 (1H, m, H-4), 3.37 (3H, s, OMe), 3.30 (3H, s,
OMe), 3.14 (1H, quint, J = 6.5Hz, H-12), 2.30 (2H, m, H-
3), 1.75–1.50 (5H, br m, H-5/H-6/H-9), 1.45–1.40 (2H, m,
H-7), 1.12 (3H, d, J = 6.5Hz, H-13), 0.94 (3H, d, J = 7Hz,
Me-C), 0.91 (3H, d, J = 7Hz, Me-C), 0.90 (9H, s, t-Bu),
0.89 (9H, s, t-Bu), 0.86 (3H, d, J = 7Hz, Me-C), 0.09 (3H,
s, Me-Si), 0.07 (3H, s, Me-Si), 0.06 (3H, s, Me-Si), 0.05
(3H, s, Me-Si). 13C NMR (125MHz) d 18.5, 18.3 (C),
135.6, 81.4, 79.9, 73.4, 72.6, 43.4, 41.2, 36.6 (CH), 116.7,
96.1, 36.0, 33.4, 27.2 (CH2), 56.4, 55.6, 26.1 (·3), 26.0 (·3),
16.5, 14.6, 11.1, 10.6, ꢀ3.3, ꢀ3.5, ꢀ4.0, ꢀ4.1 (CH3). HR
EIMS m/z (% rel. int.) 517.3756 (M+ ꢀ t-Bu, 3), 283 (20),
231 (55), 139 (34), 59 (100). Calcd for C31H66O5Si2-t-Bu,
517.3744.